Panel 5: Personal Protective Equipment
Research on the efficacy of respirators in preventing the transmission of influenza

Roland Berry Ann
CDC/NIOSH
National Personal Protective Technology Laboratory
Pittsburgh, PA 15236

Institute of Medicine
Committee on Respiratory Protection
Recommendations for HealthCare Workers

August 13, 2009
Presentation Overview

• NIOSH respirator certification program
 – Scope of activities
 – Evaluation of Filter Collection Efficiency

• Fit test science

• Research Initiatives
NIOSH Respirator Certification Program

- **Pre-Certification Activities**
 - Engineering evaluations
 - Performance verification tests
 - Quality Assurance plan evaluations

- **Post-Certification Activities**
 - Product audits
 - Manufacturing site audits
 - Respirator equipment evaluations
 - Performance verification
 - Configuration verification
NIOSH Respirator Certification

• Complete respirator assemblies are certified
 – Air-Purifying: Particulate, Gas & Vapor, Gas masks, Powered air-purifying
 – Atmosphere-Supplying: Self-contained Breathing Apparatus, Supplied-Air (Airline)

• Respirator assemblies
 – System tests
 – Configuration management

• Particulate respirator face fit characteristics currently not evaluated for certification
Sizes of Common Particles

Air contaminant size

Sizes of Interest:
- Nanoparticles: 1 - 100 nm (0.001-0.1 µm)
- Viruses: 0.02 – 0.3 µm
- Bacteria: 0.3 – 10 µm
- Fungal spores: 0.5 – 30 µm
- NIOSH Criteria: 0.3 micron (MMAD)

Adapted from: Guidance for Filtration and Air-Cleaning Systems to Protect Building Environments from Airborne Chemical, Biological, or Radiological Attacks, DHHS (NIOSH) Publication No. 2003-136.
Mechanisms of Capturing Particles

Non-absolute capture: Particles travel through a fiber mesh with large holes but a long path
Filter Performance

- Most Penetrating Particle exists
- Filter efficiency tests with most penetrating size particle
- Completely assembled filter

NIOSH Criteria
0.3 micron (MMAD)
Filter Efficiency Performance Results

<table>
<thead>
<tr>
<th>Respirator/Mask Type</th>
<th>Polydisperse Aerosol Test (PAT) (%)</th>
<th>Monodisperse Aerosol Test (MAT) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIOSH N95</td>
<td>98.76 - 99.39</td>
<td>94.8 – 98.0</td>
</tr>
<tr>
<td>FDA Surgical Mask</td>
<td>11.94 – 98.42</td>
<td>27.49 - 91.02</td>
</tr>
<tr>
<td>Unregulated Dust Mask</td>
<td>12.98 - 99.00</td>
<td>4.31 - 81.63</td>
</tr>
</tbody>
</table>

Sample sizes: N95=5; P100=2, Surgical mask=5, Dust mask=5
Verification of most penetrating particle size using nanoparticles (20-400nm)

![Graphs showing efficiency vs. particle diameter for N95 and P100 filters.](chart.png)
N95 respirator filters achieved expected performance with MS2 virus challenge
N95 respirator filters achieved expected performance with *Bacillus globigii* bacteria challenge
Filtration theory applies when testing into the nanoparticle range down to 4 nm.
Validation / Evaluation of Fit Test Methods

- **Multiple research projects conducted between ~1995 – 2005**
 - Validate quantitative & qualitative fit test methods
 - Simulated workplace protection factor studies
 - Workplace protection factor studies
 - New fit testing concepts

- **>10 manuscripts published**

- **Key findings**
 - Quantified fit test error rates
 - Fit testing reduces worker exposure

Graphs showing correlation between fit factors and protection factors measured at a steel foundry.

- CHD Fit Test (Half-Masks)
 - R Squared = 0.81

- Correlation between Fit Factors and Protection Factors Measured at a Steel Foundry (Half-Masks)
Fit test method performance using simulated workplace protection factors

- **Objective** – Assess the impact of fit testing on N95 elastomeric and N95 filtering facepiece respirators

- **Methods**
 - Qualitative and quantitative testing
 - 15 elastomeric N95 respirators
 - 33 filtering facepiece N95 respirators

- > 10 manuscripts published

- **Key findings**
 - Some key findings relevant to fit
Performance Without Fit Testing

<table>
<thead>
<tr>
<th>Respiratory Protective Device Type</th>
<th>GM</th>
<th>GSD</th>
<th>5th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>N95 Elastomeric Facepiece</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (15 models)</td>
<td>35.5</td>
<td>2.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Range</td>
<td>22.2-161.1</td>
<td>3.8-25.3</td>
<td></td>
</tr>
<tr>
<td>N95 Filtering Facepiece</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (33 models)</td>
<td>20.5</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Range</td>
<td>3.0-242.6</td>
<td>1.3-48.0</td>
<td></td>
</tr>
<tr>
<td>Surgical Masks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All (6 models)</td>
<td>2.6</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Range</td>
<td>1.6 - 4.0</td>
<td>1.0 - 1.9</td>
<td></td>
</tr>
</tbody>
</table>

All devices tested using a 25-member fit test panel performing a SWP protocol
Performance with Fit Testing

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Fit-Test Method Without</th>
<th>Bitrex™</th>
<th>Saccharin</th>
<th>PortaCount w/Companion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtering-Facepiece</td>
<td>3.3</td>
<td>7.9</td>
<td>11.0</td>
<td>20.5</td>
</tr>
<tr>
<td>Elastomeric</td>
<td>7.3</td>
<td>11.1</td>
<td>11.7</td>
<td>13.0</td>
</tr>
</tbody>
</table>

All devices tested using a 25-member fit test panel performing a SWP protocol
Nanoparticle Faceseal Leakage for a N95 FFR at 18 breaths/min
Respirator Fit Research

- 2003 US head and neck anthropometrics survey
- Develop representative respirator fit test panels
- Develop new headforms
- 2006 IOM evaluation of the NIOSH anthropometric survey
- Current research
 - Laboratory Study to Assess Causative Factors Affecting Temporal Changes in Filtering-Facepiece Respirator Fit
 - Facial anthropometric research
2003 Head and Face Anthropometric Survey

- **Goal** – better understanding the sizes and shapes of the heads and faces of the U.S. work force

- **Approach** – 3997 subjects (traditional measurements), 1039 subjects (3-D scan data)

- **Key findings**
 - Los Alamos National Laboratory (LANL) full-facepiece panel excludes > 15% of the current US work force
 - Current U.S. work force has larger heads and faces and is more diverse than 1967 military personnel
Respirator Fit Test Panels

- **Goal** – Develop new respirator fit test panels & sizing systems
- **Background** - respirator fit test panels provide an objective tool for selecting test subjects based upon their facial characteristics for use in research, product development, testing, and certification
- **Key findings** - NIOSH bivariate and the PCA fit test panels are more representative than the LANL panel and cover > 95% of the current U.S. work force
- **Current applications** – used in draft NIOSH total inward leakage test and ISO technical specifications & test methods, cited by FDA as an example test panel, by manufacturers for product design
Total Inward Leakage (TIL) Update

• TIL regulation in rulemaking

• Total Inward Leakage (TIL) Test:
 – Measures total % reduction (inside / outside) mask
 – Includes leakage through all paths (e.g. filter, facepiece-face seal connections, etc.)

• NIOSH conducted benchmark testing on 100 respirators and held public stakeholder meetings to share results and gain stakeholder input on the TIL concept
 – August 25, 2004
 – June 26, 2007
Other Related Research

• Decontamination of filtering facepiece respirators (FFRs) for reuse
• Bacterial/viral particle reaerosolization
• Layered masks/respirators
• N95/P100 studies
• No fit respirator workshop
• Breathing gas studies
• Stored FFRs
Reaerosolization of B. Globigii particles
Reaerosolization of MS2 virus particles
INNOVATIVE RESPIRATORY ENSEMBLES (N95FFR with surgical mask overlay)

- Suggested by IOM and CDC as possibly extending useful life of N95FFR

- Breathing resistance of the N95 is increased by roughly 10% over baseline N95 (Vojtko M, Roberge M, Vojtko R, Roberge R: Effect on breathing resistance of a surgical mask worn over an N95 Filtering Facepiece Respirator. J Intl Soc Resp Protect 2008; 25:1-8)
INNOVATIVE RESPIRATORY ENSEMBLES (N95FFR WITH PAPR)

- Question: How much protection is afforded by a loose-fitting PAPR if the motor or battery fails?
- Answer: A recent study* demonstrated a simulated respirator fit factor of <10.

- Question: How much extra protection is afforded by wearing an N95 filtering facepiece respirator concurrently with a loose-fitting PAPR?
- Answer: An order of magnitude greater protection if the PAPR is functional, and 2-3 orders of magnitude if the PAPR motor or battery is non-functional

*Roberge M, Vojtko M, Roberge R, Vojtko R: Resp Care (in press)
N95/P100 Total Inward Leakage (TIL) Testing

- **Background** – significant interest in assessing the differences in protection provided by an N95 versus P100

- **Current concept**
 - N95 and P100 FFRs, elastomeric half-masks, and full facepiece respirators
 - Quantitative testing – corn oil and ambient with NaCl
 - Qualitative testing – Bitrex
 - Use new NPPTL fit test facility

- **Status**
 - Pilot study
 - Preliminary test results show fitting characteristics of seal contributes more to Total Inward Leakage than filter efficiency.
Reusability of Filtering Facepiece Respirators

- *Effect of decontamination on FFR filter efficiency*
 - Filter efficiency tested after decontamination
 - UV, microwave generated steam, and moist heat (60°C, 80% RH, 4 hours) are considered to be the most promising methods for possible FFR decontamination and will be used for future studies.

- *Effects of decontamination methods on respirator components*
 - Model specific
 - Mechanical strap testing showed FFR strap length and elasticity are affected differently by different methods.
 - Dry heat (160°C, 1 hr) melted straps of three FFR models.
 - Strap tests alone are unlikely to be a good predictor for respirator fit

- *Human subject fit-testing conducted on decontaminated respirators using the three down-selected decon methods (UV light, Moist Heat, and Microwave generated steam)*
 - 16 of the 18 respirator model / decontamination method combinations did not demonstrate any significant change in fit caused by the decontamination process

- *Work continues to address concerns that decontamination of unworn respirators does not replicate used respirator decontamination*
 - Protein buildup on respirator surface
 - “Wrinkled” surface areas of respirators
Presentation Summary

• Comprehensive respirator certification program
 – Pre- and post-approval test and evaluation of product compliance
 – Pre- and post-approval evaluation of quality control effectiveness

• Science of Single Fiber Theory (Interaction of Particulate Collection Mechanisms continues to be exhibited)

• Fit test science has demonstrated the value of Fit Testing respirators

• Research Initiatives are closing the knowledge gaps
NIOSH NPPTL/PPT Program

Visit Us at http://www.cdc.gov/niosh/programs/ppt/
http://www.cdc.gov/niosh/npptl

Thank you

Disclaimer: The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy.