Panel B – Emerging Data Sources and Methods for Pharmacovigilance

Andrew Bate
Senior Director, Analytics Team Lead, Epidemiology, Worldwide Safety Strategy

Third Meeting of the IOM Committee on
Ethical and Scientific Issues in Studying the Safety of Approved Drugs
November 9, 2010
Potential Conflicts of Interest statement

• Employee of Pfizer Inc
Overview

• Background
• Signal detection and analysis of spontaneous reports
 – WHO process
• Active Surveillance on EMR data: Signal identification and refinement
• Concluding remarks
Background

- Many issues driving Pharmacovigilance change including
 - More integrated, extensive Risk Management Planning
 - Risk benefit analysis method development
 - Novel Epidemiological methods, tools and approaches
 - E.g. Approaches to reduce the chance and impact of confounding
 - Public-Private partnerships and international initiatives e.g. OMOP, CIOMS
- 2007 FDAAA call for access to 100M patient records by 2012
 - FDA Sentinel Initiative to test data models and explore methods
- Existing observational databases have been routinely used for hypothesis testing for many years
 - Can they also be usefully applied to hypothesis generation? Signal detection and refinement as well as signal evaluation?
 - What is the ongoing role and value of spontaneous reports?
Routine quantitative signal detection of spontaneous reports

- Detect potential signals for further investigation that might not be readily apparent at case entry
 - Detect ‘unexpectedly’ frequent reporting relative to a background of other reports
 - Clinical review remains critical

- Several studies showing reasonable predictive value of approaches

- Used extensively, but remain areas of research

- Nature of spontaneous reports limits role in pharmacovigilance
Outline of WHO signalling procedure

- Combinations
 - Quantitative threshold
 - With quantitative information tagged

- Associations

- Signals
 - Includes triage steps

- Signals
 - Signal document

Based on Lindquist et al 2000
Data mining on spontaneous report example

Captopril - Coughing

Ref Bate1998 EJCP
Quantitative screening for duplicate case reports in anonymized data

- Novel record matching algorithm
- Some reports identical in fields but insufficiently informative data to be likely duplicates of the same report
- Algorithm detects pairs like this:

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Country</th>
<th>Drug substances</th>
<th>ADR terms</th>
<th>Onset date</th>
<th>Outcome</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>F</td>
<td>NOR</td>
<td>6 matched, 1 unmatched</td>
<td>3 unmatched</td>
<td>2004-04-30</td>
<td>?</td>
<td>+76.97</td>
</tr>
<tr>
<td>50</td>
<td>F</td>
<td>NOR</td>
<td></td>
<td></td>
<td>2004-04-20</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
Duplicate Detection Algorithm detects ‘over-reporting’: An example

- Three report cluster from a specific country
 - Onset: 16th Dec 2003, Females age: 8, 18 & 29
- All had same sole drug listed and sole adverse event listed; drug and AE both rare
 - Not duplicates, but all reported by the same dentist
- Statistical analysis of reports routinely assume reports are independent observations
 - Not optimal when selective ‘over-reporting’
- Such issues could lead to false positive signals
Novel Use of Claims & EMRs for signal detection/refinement

Signal Generation
- Any Medical Event
- Designated Medical Events

Signal Refinement

Signal Evaluation

Product Approval & Launch

Rapid
Detect the unexpected
Less persuasive

Time Consuming
Test the anticipated
Convincing
Some key concepts in active surveillance on Electronic Medical Records (EMRs)

• Differences between what expect and what observe after drug exposure
• Can look at events both prior and post drug exposure
• In contrast to spontaneous reports, can consider
 – Diagnoses and tests
 – Drug utilization
• Many challenges e.g. false positive findings (no clinical suspicion of causality)
Recording of angioedema for lisinopril users compared to non-users: 2000-2005

Unpublished data based on work in Brown et al., (2007, 2009) in PDS). Contact: jeff_brown@hphc.org

Signal at month 13; 3 observed and 0.06 expected

Note: Base-case analysis. Outcome: Angioedema. Adjusted for age, sex, and health plan.
Acute pancreatitis recording relative to omeprazole prescription in an EMR

As presented in Noren et al 2008
Surveillance using EMRs and Claims

• Will active surveillance methods be increasingly examined on longitudinal healthcare data sets?
 – Yes

• Will they replace spontaneous reports for early signal detection in the near future?
 – No

• They might facilitate
 – Faster signal refinement
 – Better understanding for the need for formal Epidemiological studies
 • And help in study design

• Several initiatives investigating emerging roles
Some other methodological advances in safety science at Pfizer

• Issues in the use of CDMs for distributed network safety surveillance
 – Zhou X et al 2010 Lessons Learned from Mapping the THIN database to the Observational Medical Outcome Partnership (OMOP) Common Data Model (CDM). PDS 19: S311

• Clarifications around safety terminology

• Use of Large Simple Trials to study safety
 – Strom et al 2010 Comparative Mortality Associated With Ziprasidone and Olanzapine in Real-World Use Among 18,154 Patients With Schizophrenia: The Ziprasidone Observational Study of Cardiac Outcomes (ZODIAC), Am J Psych In Press

• Standing Cohorts
A Pharmacovigilance tool kit for surveillance

- Spontaneous report analysis
- Surveillance using other data sets, such as
 - Prescription Event Monitoring
 - Clinical trial data (Pre and post marketing)
 - Health insurance claims data
 - Electronic patient and medical records
 - Utilizing established patient and/or physician networks
- For signal detection and signal refinement

Formal Epidemiological Studies will continue to play an increasingly critical role for hypothesis testing of potential safety issues
Conclusions

• Quantitative approaches add value to signal detection on spontaneous reports – and spontaneous reports do the job of signal detection well
• Pharmacoepidemiological studies for hypothesis evaluation have a crucial, routine role in drug safety
• Emerging evidence that surveillance of longitudinal observational data (EMRs and Claims databases) can contribute to process of signal detection and refinement
 – Huge challenge remains of how to separate potential true findings from vast number of false positives that could emerge
 – Much more work need to consider how to best fit emerging research into overall, routine signal management processes