Designing studies to evaluate biomarkers for clinical applications

Presentation to IOM Genomics Workshop:
Evidence for Clinical Utility of Molecular Diagnostics in Oncology
May 24, 2012

Lisa M. McShane, PhD
Biometric Research Branch
Division of Cancer Treatment and Diagnosis, NCI
Potential roles for molecular diagnostics in medicine

- **Pre-diagnosis**
 - Risk
 - Screening
 - Early detection

- **Pre-treatment**
 - Prognostic
 - Predictive

- **Intra-treatment**
 - Early response or futility
 - Toxicity monitoring

- **Post-treatment**
 - Early endpoint
 - Recurrence or progression monitoring

FOCUS: Initial therapy selection

- Confirmation
- Staging
- Subtyping
Prognostic & predictive molecular signatures

- **Prognostic:** Signature associated with clinical outcome in absence of therapy (natural course) or with standard therapy all patients are likely to receive
 - Treatment vs. no treatment following surgery
 - Aggressiveness of treatment
 - Examples: OncotypeDX or Mammaprint

- **Predictive:** Signature associated with benefit or lack of benefit (potentially even harm) from a particular therapy relative to other available therapy
 - Select one treatment vs. another treatment
 - Alternate terms: treatment-selection, treatment-guiding, treatment effect modifier
 - Examples: ER/endocrine therapy, Kras/anti-EGFR mAb
When is a prognostic test clinically useful?

- Is the prognostic information sufficiently strong to influence clinical decisions?
- Does the biomarker provide information beyond standard prognostic factors?
- Does use of the test result in clinical benefit?

Good prognosis group (M-) may forego additional therapy

Is this prognostic information helpful?

Hazard ratio = .18

Hazard ratio = .56
Prognostic vs. predictive distinction: Importance of control groups

No survival benefit from new treatment

Prognostic but not predictive

New treatment for all or for M+ only?*

Prognostic and predictive

(*Different considerations might apply for Standard Treatment ± New Treatment)
When is a predictive test clinically useful?

Treatment-by-biomarker interaction: Is it sufficient?

Prognostic and predictive; New treatment for M+ only

Qualitative interaction
- Std Trt better for M− (HR_- = 1.36)
- New Trt better for M+ (HR_+ = 0.63)
- Interaction = 0.63/1.36 = 0.47

![Graph showing survival probability over years for M− and M+ with and without new treatment.]

Prognostic and predictive; New treatment for all?*

Quantitative interaction
- New Trt better for M− (HR_- = 0.44)
- New Trt better for M+ (HR_+ = 0.63)
- Interaction = 0.63/0.44 = 1.45

Interaction = HR_+/HR_- where HR=\(\frac{\lambda_{\text{New}}}{\lambda_{\text{Std}}}\)

(*Different considerations might apply for Standard Treatment ± New Treatment)
Prospective versus retrospective studies

- Prospective studies to establish clinical utility of molecular tests
 - Prognostic study design
 - Unbiased patient cohort & adjustment for standard variables
 - Predictive study designs (Freidlin et al 2010 JNCI; IOM Omics Report 2012)
 - Enrichment design
 - Completely randomized design
 - Biomarker-stratified design
 - Biomarker-strategy design
 - Very difficult to conduct if
 - “Take away” an established therapy
 - Prior belief in biomarker is too strong and test is already available
 - Huge and expensive
Prospective versus retrospective studies

- Retrospective studies can provide a high level of evidence if performed properly
 - Prospective-retrospective design (Simon et al 2009 *JNCI*)
 - Specimens from suitable clinical trial or well run prospective cohort study
 - Sufficient number of representative specimens
 - Analytically validated assay
 - Pre-specified analysis plan
 - Results validated in one or more similar, but separate studies

- Many retrospective studies are poorly conducted
 - No design (“convenience samples”)
 - Multiple testing and model overfitting
 - Misinterpretation
 - Deficient reporting
Purpose: To update the recommendations for the use of tumor marker tests in the prevention, screening, treatment, and surveillance of breast cancer.

“... primary literature is characterized by studies that included small patient numbers, that are retrospective, and that commonly perform multiple analyses until one reveals a statistically significant result. ... many tumor marker studies fail to include descriptions of how patients were treated or analyses of the marker in different treatment subgroups. The Update Committee hopes that adherence to ... REMARK criteria will provide more informative data sets in the future.”
Many retrospective studies lack a design

- Study aims & hypotheses?
- Clinical question?

- “Convenience” specimens
- Heterogeneous patient characteristics
- Treatments: Unknown, non-randomized, not standardized
- Insufficient sample size
- Uncertain specimen and data quality

What can we do with our marker on these 89 specimens?
Almost all articles on cancer prognostic markers report statistically significant results

Panayiotis A. Kyzasa, Despina Denaxa-Kyzaa, John P.A. Ioannidisa,b,c,*

aClinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece

bBiomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece

cInstitute for Clinical Research and Health Policy Studies, Department of Medicine, Tufts-New England Medical Center, Boston, USA

“If you torture the data long enough they will confess to anything.”

Source unknown
Multiple testing is particularly problematic when there is no pre-specified analysis plan and findings are selectively reported on basis of statistical significance.

<table>
<thead>
<tr>
<th># indep. tests (m) at 0.05 level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability* of ≥ 1 false positive</td>
<td>.05</td>
<td>.10</td>
<td>.14</td>
<td>.19</td>
<td>.23</td>
</tr>
</tbody>
</table>

*Prob[≥ 1 false positive] = 1-(0.95)^m

- Multiple markers
- Multiple endpoints
- Multiple subgroups
- Multiple marker cut-points
- Multiple models
Model overfitting

- Statistical model describes random error or noise instead of the true underlying relationship
 - Model is excessively complex
 - Too many parameters
 - Too many predictor variables
 - “Short fat” data
 - Many more variables than independent subjects
 - Data sparse in high-dimensional biomarker space
 - True model complex
 - Overfit model will generally have poor predictive performance on an independent data set

MODEL VALIDATION IS ESSENTIAL
Model validation

- **RESUBSTITUTION** (plug in training data) estimates of model performance are highly biased and **COMPLETELY USELESS** in high-dimensional data setting

- **INTERNAL:** Within-sample validation
 - Cross-validation
 - (Leave-one-out, split-sample, k-fold, etc.)
 - Bootstrap and other resampling methods
 - Method comparisons: Molinaro et al. 2005 *Bioinformatics*

- **EXTERNAL:** Independent-sample validation

 References: Simon et al. 2003 *JNCI*; Dupuy & Simon 2007 *JNCI*
Simulation of prognostic model resubstitution method

(Subramanian & Simon 2010 \textit{JNCI} – lung cancer prognostic signatures)

- Survival data on 129 patients from previous publication
- Expression values for 5000 genes generated randomly from $N(0, I_{5000})$ (“noise”) for each patient
- Data divided randomly into training and validation sets
- Prognostic model developed from training set and used to classify patients in both training and validation sets

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Training</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“A 15-gene signature separated OBS patients into high-risk and low-risk subgroups with significantly different survival (hazard ratio [HR], 15.02; 95% CI, 5.12 to 44.04; *P* < .001; stage I HR, 13.31; *P* < .001; stage II HR, 13.47; *P* < .001).”

(JCO 2010; 28: 4417-4424)

Figure 1 legend:
“Disease-specific survival outcome based on the 15-gene signature in the JBR.10 training set.”
Independent validations (?) of 15-gene prognostic score

“The prognostic effect was verified in the same 62 OBS patients where gene expression was assessed by qPCR. Furthermore, it was validated consistently in four separate microarray data sets (total 356 stage IB to II patients without adjuvant treatment) and additional JBR.10 OBS patients by qPCR (n=19).”

What happened to HR=15.02?

Different endpoint?

Is this still clinically useful?
Assessment of predictive tests: Resubstitution pitfalls again

Is resubstitution acceptable when model was fit using the control (OBS) arm only? NO! (Fig. 3, JCO 2010; 28: 4417-4424)

![Graphs showing survival rates for high and low risk groups using microarray and RT-qPCR methods.](image)
Assessment of predictive tests: Power pitfalls

- Randomized clinical trials adequately powered to detect treatment effects are often not sufficiently powered to establish predictive marker effects.
- Non-significance of treatment effect in a “marker negative” subgroup is often misinterpreted as no treatment effect.
CONCLUSION: “Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylated MGMT promoter did not have such a benefit.”

(Statistically significant treatment benefit in both methylated and unmethylated groups for PFS endpoint.)

<table>
<thead>
<tr>
<th>Overall Survival (OS)</th>
<th>Hazard ratio (95% CI)</th>
<th>Median OS (months)</th>
<th>2-yr OS (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT Methylated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT (n=46)</td>
<td>1.00</td>
<td>15.3 (13.0-20.9)</td>
<td>22.7 (10.3-35.1)</td>
<td></td>
</tr>
<tr>
<td>RT+TMZ (n=46)</td>
<td>0.51 (0.31-0.84)</td>
<td>21.7 (17.4-30.4)</td>
<td>46.0 (31.2-60.8)</td>
<td>0.007</td>
</tr>
<tr>
<td>MGMT Unmethylated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT (n=54)</td>
<td>1.00</td>
<td>11.8 (9.7-14.1)</td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>RT+TMZ (n=60)</td>
<td>0.69 (0.47-1.02)</td>
<td>12.7 (11.6-14.4)</td>
<td>13.8 (4.8-22.7)</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Assessment of predictive tests: Power pitfalls

With follow-up to 5 years, the OS difference became significant in favor of RT+TMZ even in the unmethylated MGMT group (not adjusted for testing in 2 subgroups).

(Lancet Oncol 2009; 10: 459-466)

<table>
<thead>
<tr>
<th>MGMT Status</th>
<th>Hazard ratio (95% CI)</th>
<th>5-yr OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>1.0</td>
<td>5.2 (1.0-15.0)</td>
</tr>
<tr>
<td>RT + TMZ</td>
<td>0.3 (0.2-0.4)</td>
<td>13.8 (4.5-28.2)</td>
</tr>
<tr>
<td>Unmethylated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>RT + TMZ</td>
<td>0.6 (0.4-0.8)</td>
<td>8.3 (2.7-18.0)</td>
</tr>
</tbody>
</table>

(Salvage therapies, including TMZ, confound OS endpoint.)
Figure 1. Genomic Decision Algorithm to Predict Sensitivity of Invasive Breast Cancer to Adjuvant Chemotherapy (CT) or Chemoendocrine Therapy (CT+ HT)

Claim: Test is predictive and not prognostic
P=.002 (Fig 2) vs. P=.096 (eFig 6A)

AT ⇒ HT if ER+
A = anthracycline
T = taxane
HT = hormonal therapy

(JAMA 2011; 305: 1873-1881)
Assessment of predictive tests: Pitfalls of non-randomized comparisons

Figure 2. Validation Cohort #1

Cohort 1
35% N−, 65% N+ (worse prognosis)
62% ER+
All ER+ receive endocrine therapy
All receive taxane
Follow-up ends at 5 yrs

Cohort 2
100% N− (better prognosis)
71% ER+
No endocrine therapy
No taxane therapy
Curves merge around 14 yrs

No HT AND no CT

(JAMA 2011; 305: 1873-1881)
NEW YORK – Following the results of a study suggesting that its genomic test may have use in predicting chemotherapy response in patients with breast cancer, <Company> said that a launch of the test, as well as another for predicting endocrine therapy response, is in the works.

In the study, published in the May 11 issue of the Journal of the American Medical Association, the authors said that patients who were predicted to be sensitive to taxane-anthracycline chemotherapy had a 56 percent probability of "excellent pathologic response" and distant relapse-free survival of 92 percent, as well as an absolute risk reduction of 18 percent.

Based on those results, <Company> is in the process of validating the test for launch in a CLIA format and is now seeking a commercialization partner. And during the second half of this year, the company anticipates it will embark on a strategy to receive clearance from the US Food and Drug Administration for the test.
Summary recommendations

- Earlier and more intense focus on clinical utility
 - Educate about proper interpretation
- Rigor in test development process and study design
 - Meaningful well-designed studies
 - Proper statistical analysis
 - Independent external validation
 - Inter-disciplinary expertise
 - Aid in identifying relevant biomarker studies for overviews and meta-analyses
 - Submission of study protocols (pre-specified analysis plans)
 - Help reduce non-publication bias and selective reporting
Summary recommendations (cont.)

• Complete and transparent reporting
 ▪ REMARK guidelines
 • McShane et al 2005 *J Natl Cancer Inst*
 ▪ EQUATOR Network – collection of reporting guidelines for health research studies (www.equator-network.org)
 ▪ BRISQ – reporting details of biospecimen collection, handling, storage (Moore et al 2011 *Cancer Cytopathol*)
 ▪ McShane & Hayes (*JCO*, in press)

• Expanded access to *useful* specimens
 ▪ Well-annotated with clinico-pathologic data, treatment, and clinical outcome
 ▪ Alternative sources (trial specimens optimal but limited)

• Alignment of good science, regulation, and payment