Clinical Next Generation Sequencing-Value to Drug Developers

Gary Palmer, MD, JD, MBA, MPH
Senior VP, Medical Affairs
Foundation Medicine
Cambridge, MA
Cancer Diagnostic Market is Rapidly Evolving

Molecular profiling is driving many new targeted cancer therapies, biomarkers and diagnostics tests

~15 approved drugs hitting ~15 targets

Today

~500 compounds hitting ~140 targets in development

Subset of analyzed targets listed; data from BioCentury Online Intelligence Database
Current Model of Drug Development not Sustainable

- Limited tissue biopsies to search for markers
- Turn-around-time (TAT) issues for prospective studies
- Need to work in FFPE for retrospective studies
- Inefficiency of patient screening for rarer markers
- Relatively short duration of responses for some targeted drugs
- Complex biology requiring increased knowledge of pathways
- Complex biology requiring interpretation, not just raw data
- Clinical Next Generation Sequencing can address these issues
Challenges Of Sequencing Clinical Cancer Samples

- Low purity – cancerous cells may only be a minor fraction of total sample
- Heterogeneity – multiple sub-clones of cancer may be present in one tumor sample
 - Mutation of interest (e.g., a resistance mutation) may be present in a low abundance sub-clone
- Aneuploidy – chromosomal gains and losses may modify mutation abundance

Relevant mutations may be rare in the pool of sequenced DNA
Founders of Foundation Medicine

Eric Lander, PhD
- Recognized driving force in genomics
- Founding Director of the Broad Institute
- MIT, Harvard Medical School
- Founder Millennium Pharmaceuticals

Levi Garraway, MD, PhD
- Cancer genomics innovator and creator of OncoMap project
- Medical Oncology, Dana Farber Cancer Institute, Broad Institute
- NIH “New Innovator”

Todd Golub, MD
- Recognized leader in cancer genomics, targeted therapeutics
- Founding director of Broad Institute Cancer Program
- Dana Farber, HHMI, NCI advisor

Matthew Meyerson, MD, PhD
- Principal Investigator of The Cancer Genome Atlas program
- Clinical Pathology, Dana Farber Cancer Institute, Broad Institute
- Co-discoverer of EGFR mutations in lung cancer

Alexis Borisy
- Successful biotechnology entrepreneur
- Founder, CEO of CombinatoRx, $750M, public listing
- TR Innovator of the Year
- Boards of BIO, Forma Therapeutics, Science Museum
Senior Management Team

Michael Pellini, MD
President & Chief Executive Officer
- Breadth of experience in life sciences clinical diagnostics and lab industries
- GE Healthcare/Clarinet, Safeguard, Genomics Collaborative

Ronald Collette
Chief Information Officer
- 25 years in management of information technologies and security; highly regarded author and speaker
- Clarient, Traxx Consulting (Irvine Company, Pacific Life), Fluor Corporation

Vincent Miller, MD
SVP, Clinical Development
- 20 years at Memorial Sloan-Kettering Cancer Center (Attending Physician)
- Pioneer in EGFR mutation; clinical application
- Expert in lung cancer & clinical trial design

Phil Stephens, PhD
Vice President, Cancer Genomics & Director, R&D
- World renowned expert in cancer genomics, formerly of the Wellcome Trust Sanger Institute
- Lead author in the discovery of BRAF in melanoma and ERBB2 in lung cancer
- Author of dozens of high-profile publications in *Nature, Nature Genetics, Cell*

Kevin Krenitsky, MD
Chief Operating Officer
- 15 years of experience in global diagnostic and biotechnology operations
- Enzo Clinical Labs, BioServe Biotechnologies, Genomics Collaborative

Maureen Cronin, PhD
SVP, Research & Product Development
- More than 20 years experience leading R&D of diagnostic tests based on genomic biomarkers
- Genomic Health, ACLARA Biosciences, Affymetrix

Gary Palmer, MD, JD, MBA, MPH
SVP, Medical Affairs & Commercial Development
- Three decades in oncology, as a clinician in academic and community settings and executive in the biotech and diagnostic industries
- Genomic Health, Kosan Biosciences, Amgen

Jason Ryan, CPA, MBA
Vice President, Finance
- Broad financial and operational experience in high growth life science companies
- Taligen Therapeutics, Codon Devices, Genomics Collaborative, Deloitte
NGS-Based Genomic Profiling Test

Fixed sample slides

Sequencing (Illumina HiSeq™ 2000)

DNA extraction, Library construction, Hybrid capture (Agilent SureSelect™)

189 cancer genes 500x-1000x unique coverage

Optimized for accuracy 14-21 days

ANALYSIS PIPELINE

Point Mutations
Bayesian algorithm

Short Insertions/deletions
Local assembly

Copy Number Alterations
Comparison with process-matched normal control

Rearrangements
Analysis of chimeric pairs

Annotation & Interpretation
- dbSNP
- COSMIC
- Med. Literature

Clinical Report
Current Model Misses Therapeutic Options

Non small cell lung cancer example

- Genes with Actionable Mutations
- Genes with Mutations, Actionability Unknown
Pharma Partners

- Only end to end solution
- Early and consistent revenue
- Dx rights/commercial positioning
- Biomarker ID, development drives discovery
- Multiple trial scenarios

Multiple and significant pharmaceutical company collaborations underway:
Varieties of Pharma Interactions

- Single agent clinical trials
- Longitudinal studies
- Multiple Phase I trials
- Studies not meeting primary endpoints
Example 1: Single Agent Trial

- Single agent clinical trial
- Foundation Medicine’s core test provides:
 - Identifies all relevant genomic aberrations
 - Stratifies/accrues patients in multi-arm trial
 - Data to identify genomic biomarkers for response and/or primary resistance
- Pharma/Biotech Requirements:
 - Clinical grade reliability, sensitivity, specificity
 - Clinically relevant turn-around time
 - Extensive number of genes analyzed to develop biomarker(s)
 - Excellent performance with minimum DNA
Example 2: Longitudinal Disease/Targeted Therapy Study

• Longitudinal study (at relapse, patient is re-biopsied)
• Foundation Medicine’s core test provides:
 – Biomarkers of rational drug combinations
 – Identification of biomarkers for response
 – Identification of biomarkers of primary and acquired resistance
• Pharma/Biotech Requirements:
 – Clinical grade reliability, sensitivity, specificity
 – Clinically relevant turn-around time
 – Extensive number of genes analyzed to develop biomarker(s)
 – Excellent performance with minimum DNA
Example 3: Multiple Simultaneous Clinical Studies

• Foundation Medicine’s core test provides:
 – High likelihood of identifying eligible patients since all key genomic aberrations are tested upfront
 – PI’s having all of relevant information about clinical trial participants enabling improved research opportunities
 – Pharma/Biotech experiences better accrual, appropriate selection of patients for trials and improved PI recruitment

• Pharma/Biotech Requirements:
 – Clinical grade reliability, sensitivity, specificity
 – Clinically relevant turn-around time
 – Extensive number of genes analyzed to develop biomarker(s)
 – Excellent performance with minimum DNA
Example 4: Clinical Trial That Did Not Meet Primary Endpoint

• Opportunity to explore data from unsuccessful clinical trial for mechanism of drug effect and markers for response/resistance
• Foundation Medicine’s core test provides:
 – Data to suggest alternative hypotheses to explain unexpected clinical trial outcomes
 – Explanation for lack of statistically significant differences in response rates between groups
 – Identification of relevant biomarker/signature of response and/or resistance
• Pharma/Biotech Requirements:
 – Clinical grade reliability, sensitivity, specificity
 – Clinically relevant turn-around time
 – Extensive number of genes analyzed to develop biomarker(s)
 – Excellent performance with minimum DNA
What Does Pharma Want?

• Ability to work with FFPE samples
• For prospective work, clinically relevant turn-around time
• Deep coverage (so relevant alterations won’t be missed)
• Genomic “insight”—what does this mean biologically?
• Computational biology assistance
What Can NGS Do for Pharma?

• Aid in biomarker identification
 – Need “broad” but “deep” coverage so don’t miss any
• Help stratify patients for clinical trials
 – Increase “hit rate”
 – Needs to be “cost effective”—NGS can be
• Help to determine resistance markers
 – NGS on re-biopsies compared to original biopsies
• Enable combination therapy
• Assist in resurrecting “failed trials”
 – Much interest here
 – Many $$ spent on these “failed” assets
What Can’t NGS Do for pharma?

• Can’t overcome problem of very rare but actionable alterations that will require many patients be screened
• Can’t overcome problems with statistical power
What Policy Issues (FDA, etc.) Are Top of Mind?

- Critical that policy makers understand the stakes
- All of the “logistical” issues mentioned already
 - Decreasing biopsy sizes, increasing number of markers
- But oncologists can’t keep up with knowledge
 - Patients are NOT getting proper testing
 - Therefore they are NOT getting proper therapy
 - Situation will get more grave over time
- So educational forums to educate FDA and stakeholders are critical
What Policy Issues (FDA, etc.) Are Top of mind?

- We need a pathway for approval that is manageable
 - Separate validation for each “marker” is unworkable
 - NGS does not test for a specific marker
 - Literally thousands or possible results
- We need a clear path for pharma regarding
 - Companion diagnostics
The Future for NGS in Drug Development

• All clinical trials may have NGS run in Phase 1
 – This will move some trials back to pre-clinical stage

• Clinical trial paradigm will change
 – Potential patients placed on appropriate trial through NGS screening
 – Combination therapy trial
 – “Case Report” trial
 • Impossible to recruit enough patients for rare alterations
 • Label extension based on multiple N=1 case reports?
THANK YOU