PEDiatric Studies Conducted Under BPCA and prea

The Pediatric Rheumatology Collaborative Study Group

Daniel J. Lovell, MD, MPH
Joseph E. Levinson Professor of Pediatrics
Division of Pediatric Rheumatology
Cincinnati Children’s Hospital Medical Center
Cincinnati, Ohio USA
Introduction

- Pediatric Rheumatology Collaborative Study Group (PRCSG) founded in 1973
- Consortium of 148 board certified pediatric rheumatologists at 90 academic clinical pediatric rheumatology centers in the United States, Puerto Rico and Canada
- 40 trials of all phases in children with Juvenile Idiopathic Arthritis (JIA)
- Studies supported primarily by industry but also NIH, FDA Orphan Drugs, Arthritis Foundation
Background

• Juvenile Idiopathic Arthritis (JIA) most common rheumatic disease of childhood but prevalence is only 1/1000 children
• JIA has 7 subtypes but only 2-3 subtypes similar enough to adult RA to work for the BPCA
• Convergence of BPCA and proliferation of biologics in rheumatology have completely revolutionized the care of children with arthritis
• Rapidity, extent and persistence of clinical improvement able to be realized for over 80% of children with the types of JIA influenced by BPCA driven trials is nothing less than astounding but only 40-45% demonstrate complete control of the disease
• Ability to comprehensively address safety issues of biologic agents under current BPCA is limited
Etanercept in Polyarticular Forms of Juvenile Idiopathic Arthritis

% Patients

Years of Treatment

- ACR Pedi 30
- ACR Pedi 50
- ACR Pedi 70
- ACR Pedi 90
- ACR Pedi 100
Effect of etanercept on VAS, CHAQ and the Child Health Questionnaire scores
Pediatric Rheumatology Biologic Trials in Last 15 years

<table>
<thead>
<tr>
<th></th>
<th>Polyarticular JIA</th>
<th>Systemic JIA</th>
<th>Pediatric SLE</th>
<th>Pediatric Systemic Vasculitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanercept</td>
<td>BPCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infliximab</td>
<td>BPCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adalimumab</td>
<td>BPCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abatacept</td>
<td>BPCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golimumab</td>
<td>BPCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>BPCA</td>
<td>EMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canakinumab</td>
<td></td>
<td>EMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rilonocet</td>
<td></td>
<td>Orphan Drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belimumab</td>
<td></td>
<td></td>
<td>EMA</td>
<td></td>
</tr>
<tr>
<td>Rituximab</td>
<td></td>
<td></td>
<td></td>
<td>EMA</td>
</tr>
</tbody>
</table>
Pediatric Rheumatology Drug Trials in Last 15 years

<table>
<thead>
<tr>
<th></th>
<th>Adolescent Fibromyalgia</th>
<th>JIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celebrex</td>
<td></td>
<td>PREA</td>
</tr>
<tr>
<td>Meloxicam</td>
<td></td>
<td>PREA</td>
</tr>
<tr>
<td>Milnacipran</td>
<td></td>
<td>BPCA</td>
</tr>
<tr>
<td>Leflunomide</td>
<td></td>
<td>PREA</td>
</tr>
</tbody>
</table>
Safety Surveillance

- Under BPCA the Phase III trials generally involve 100-200 subjects with a pediatric rheumatic disease.
- The Phase IV study will include 300-500 subjects followed for up to 10 years but only a small proportion will remain on the same biologic for 10 years.
- To date, all registries are drug specific not disease specific.
 - Not large enough to detect rare events.
 - Limits ability to distinguish drug vs. class effect.
 - Not able to detect late toxicity with any reliability.
- BPCA does not contain language to require sufficient safety studies or to endorse/require consolidated drug safety registries in children.
Numbers of Patients Needed to Detect Adverse Events of a Given Frequency

Number of Persons Required to Observe at Least One Occurrence of an Adverse Event (AE)

Probability of observing at least one AE

<table>
<thead>
<tr>
<th>Frequency of AE</th>
<th>95%</th>
<th>90%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in 100</td>
<td>300</td>
<td>231</td>
<td>190</td>
</tr>
<tr>
<td>1 in 500</td>
<td>1,498</td>
<td>1,151</td>
<td>949</td>
</tr>
<tr>
<td>1 in 1,000</td>
<td>2,996</td>
<td>2,303</td>
<td>1,898</td>
</tr>
<tr>
<td>1 in 5,000</td>
<td>14,979</td>
<td>11,513</td>
<td>9,486</td>
</tr>
<tr>
<td>1 in 10,000</td>
<td>29,958</td>
<td>23,026</td>
<td>18,972</td>
</tr>
<tr>
<td>1 in 20,000</td>
<td>59,915</td>
<td>46,052</td>
<td>37,943</td>
</tr>
<tr>
<td>1 in 50,000</td>
<td>149,787</td>
<td>115,130</td>
<td>94,856</td>
</tr>
<tr>
<td>1 in 100,000</td>
<td>299,574</td>
<td>230,259</td>
<td>189,712</td>
</tr>
</tbody>
</table>
Ongoing Challenges

• Obtaining PK data included in BPCA but critical to obtain the data prior to or very early in Phase III Trial
• Satisfying BPCA requirements vs. FDA label indication for pediatric disease
• BPCA does not apply to adult orphan disease applications and thus no pediatric studies required
• BPCA does not address pediatric focused formulations
 • Very costly to discard biologic agents
 • Accuracy of dosing
 • Redosing from same syringe raises safety issues
• Testing of 4th or more agent in class with known efficacy
 • Current BPCA has sufficient latitude to allow FDA to adjust efficacy aspects of testing and limit to PK and safety issues
Ongoing Challenges

• EMA since 2007 has had the Pediatric Regulation
 • Requires development of PIP much earlier in drug development
 • Covers orphan disease indications
 • Requires addressing pediatric focused formulations
 • Policy supports development of a consolidated safety registry
• In rare pediatric diseases, BPCA and EMA Pediatric Regulation efficacy needs to be addressed with a single trial
 • Need to think and be able to coordinate efforts globally from the very beginning
 • Requires communication between FDA and EMA much earlier than usual for FDA
 • Single trial must serve for approval in both agencies otherwise children lose out
Conclusions

- BPCA has been enormously impactful for performance of trials of biologics in children with JIA which have lead to tremendous gains in outcomes for these children
- PREA is helpful for study of drugs in children but less impactful than BPCA
- Other rheumatic diseases affecting children also need to be studied
- Studies of TNF, IL-1, and IL-6 to date but many other biologic targets need to be studied
Conclusions

• Much work remains to improve the outcomes for children with rheumatic diseases
• An international community of pediatric rheumatologists is poised and committed to doing this work
• BPCA and PREA are critically important tools to allow this work to be done