The nab® Platform:
From Bench to the Clinic and Beyond

Neil P. Desai, PhD
Abraxis BioScience LLC

Policy Issues in Nanotechnology and Oncology, National Cancer Policy Forum Workshop,
Institute of Medicine, July 12–13, 2010
Nanoparticle Albumin-bound (nab) Platform

- Technology based on albumin + insoluble drug
- The nab platform exploits unique transport properties of albumin (gp60 and SPARC) that can result in high intratumoral concentrations
- ABRAXANE (paclitaxel + albumin) is recognized as the first true “bottom up” nanotechnology pharmaceutical product to be approved and marketed
- Approved in 38 countries for treatment of metastatic breast cancer (MBC)

![Diagram of human albumin with a hydrophobic drug, size: ~50-150 nm]
Decreased Toxicity (LD_{50}) of nab-paclitaxel vs cremophor-paclitaxel

Abraxane
- Reconstituted
 - Paclitaxel 5 mg/ml
 - Albumin ~45 mg/ml
 - No Surfactants/Solvents

Taxol
- Supplied As
 - Paclitaxel 6 mg/ml
 - Cremophor 537 mg/ml
 - Ethanol 396 mg/ml

nab-paclitaxel vs Cremophor-paclitaxel

![Graph showing LD50 comparison]

Table:

<table>
<thead>
<tr>
<th></th>
<th>LD$_{50}$ Mice</th>
<th>Human MTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cremo-paclitaxel</td>
<td>30.0 mg/kg</td>
<td>175 mg/m²</td>
</tr>
<tr>
<td>Nab-paclitaxel</td>
<td>47.0 mg/kg</td>
<td>300 mg/m²</td>
</tr>
</tbody>
</table>

Characterization of Abraxane (\textit{nab}-paclitaxel)

- Multiple orthogonal techniques are required since these systems have complex morphology and composition
 - Particle size (light scattering)
 - Surface Charge (Zeta potential)
 - Amorphous nature of paclitaxel in the nanoparticle (X-Ray Diffraction)
 - Morphology (TEM and Cryo-TEM)
 - Other specific tests defined by nature of the nano construct

Note: Inadequate sample preparation techniques for nano constructs can easily result in artifacts.
Electron Microscopy

- EM data supports proposed structure of nanoparticles
 - Size, amorphous nature
 - Amorphous nature also supported by XRPD
Preclinical Requirements for Nanotech products (e.g., nab-paclitaxel)

- Standard battery of toxicology studies are sufficient to establish safety
- Design/Conduct studies to understand the disposition of the ‘nano-construct’ invivo
- Establish unique mechanism of action/transport (MOA) if relevant
- Design target-specific studies to establish efficacy
nab Technology Platform: Harnessing Endogenous Albumin Pathways Through Two Postulated Mechanisms of Action

1. Active receptor-mediated transport (transcytosis) by gp60 and caveolae
2. Active binding of albumin-drug complex by SPARC in tumor

Through Two Postulated Mechanisms of Action

- Active receptor-mediated transport (transcytosis) by gp60 and caveolae
- Active binding of albumin-drug complex by SPARC in tumor

Diagram:

- Albumin
- Paclitaxel
- Mean size 130 nm
- Injection into circulation
- Dissociation into individual albumin-bound paclitaxel complexes at concentration below threshold
- Albumin-paclitaxel complex
- gp60 receptors
- Caveolae and vesicles
- Albumin-paclitaxel accumulation with SPARC binding
- Tumor blood vessel endothelial cells
- Tumor interstitium
- Paclitaxel-induced tumor cell apoptosis
- Tumor cells
- SPARC

Diagram:

- Albumin
- Paclitaxel
- Mean size 130 nm
- Injection into circulation
- Dissociation into individual albumin-bound paclitaxel complexes at concentration below threshold
- Albumin-paclitaxel complex
- gp60 receptors
- Caveolae and vesicles
- Albumin-paclitaxel accumulation with SPARC binding
- Tumor blood vessel endothelial cells
- Tumor interstitium
- Paclitaxel-induced tumor cell apoptosis
- Tumor cells
- SPARC
Rapid and increased Tumor Accumulation of \(nab\)-paclitaxel in tumor

Fluorescent \(nab\)-paclitaxel Nanoparticles* in Syringe injected via tail vein

MOUSE TUMOR MODEL
Imaging under Hg-lamp with 500-550 nm bandpass excitation; *\(nab\)-paclitaxel containing 0.3% Fluorescent Marker

- 33\% higher tumor accumulation of paclitaxel over 24 hr confirmed at equi-dose with radiolabelled \(nab\)-paclitaxel as compared to Taxol \((p<0.0001)\)

High SPARC level in transfected PC3/SP results in significantly improved response to Abraxane compared to PC3 wild type (p < 0.01)

Desai et al, 2007, Sidney Kimmel Targeting and Drug Delivery Conference, Coronado, CA
Clinical Efficacy of nab-paclitaxel

- Proven efficacy in phase III setting in Metastatic Breast Cancer (MBC) – Jan 2005 FDA approval
- Proven efficacy in phase III setting in non-small cell lung cancer (NSCLC) – data released at ASCO June 2010
- Strong evidence of activity in phase II pancreatic cancer and melanoma
Phase I: Clinical Response in Patients Who Have Failed Taxol Therapy

Patient did not respond to Taxol treatment

Patient responded to Abraxane treatment

Courtesy Ibrahim et al; MDACC
Phase III Trial: Abraxane vs Taxol
Metastatic Breast Cancer (460 patients)

- **ABRAXANE® 260 mg/ m²**
 - IV over 30 min q 3 wk
 - No Standard Premedication

- **TAXOL® 175 mg/ m²**
 - IV over 3 hrs q 3 wk
 - Premed. with Dexamethasone and Anti-histamines

Randomize (1:1)
N = 460

- Significantly improved response rate: 33% vs 19%, p=0.001
- Increased time to tumor progression: 22.7 wk vs 16.6 wk, p=0.003
- Prolonged survival in > 1st line patients: 56.4 weeks vs 46.7 weeks, p = 0.016
- Approved by US FDA in January 2005 for metastatic breast cancer

Phase I/II: PET Response in Pancreatic Cancer

- paclitaxel (Taxol) is not used in pancreatic cancer
- nab-paclitaxel shows remarkable responses
nab-paclitaxel and Pancreatic Cancer: Correlation of the biomarker SPARC and Survival

- SPARC status by IHC was available for 36 patients.
- SPARC signature separated patients into 2 groups
- Survival was correlated to SPARC signature

Von Hoff et al, AACR 2010
Commercial Scale Injectable Nanoparticle Manufacturing

- Non-standard equipment / processing
- Innovators are the experts
- Need to work with FDA to enable understanding of technology
- Identify key characteristics of the product and process ranges
- Key issues: consistency and reproducibility
- Appropriate in-process controls and finished product tests
- Our experience with FDA was very positive
Definitions of Nanotechnology adopted by FDA

- FDA has not established its own formal definition. Our understanding is that the FDA currently relies on the NNI definition.

- National Nanotechnology Initiative (NNI):
 - Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications.

- NCI Cancer Nanotechnology Plan (July 2004):
 - Nanotechnology refers to the interactions of cellular and molecular components and engineered materials. Such nanoscale objects - typically, though not exclusively, with dimensions smaller than 100 nanometers.
Nomenclature and labeling of nab-paclitaxel: US vs Canada / Europe / Australia

- Appropriate descriptive terms should be allowed in the label/package insert so that clinicians and patients can make an informed decision
 - e.g.: ‘Nanoparticle’

- **US label:**
 - “ABRAXANE for Injectable Suspension (paclitaxel protein-bound particles for injectable suspension) is an albumin-bound form of paclitaxel with a mean particle size of approximately 130 nanometers.”
 - US FDA **did not** permit the use of the word ‘nanoparticle’!
 - FDA used the definition of nanotechnology as <100 nm

- **Canadian, EU, Australian label:**
 - The term **nanoparticle**, albumin-bound paclitaxel, is used to describe the product