Novel Drug Combinations: Challenges from a Clinician’s Perspective

Patricia Mucci LoRusso, D.O.
Director – Experimental Medicine
Karmanos Cancer Institute
Detroit, MI
Novel drug combinations will become a pivotal tool in cancer drug therapy
Novel Combinations

• Based on our current knowledge database, are we moving forward too fast into the clinic?

• Do we possess the necessary translational tools that will help us identify the right drug combinations, ratios and schedules thereof, with the right patient?
Where will Novel Combinations Have the Greatest Impact?

• Most appropriate stage of combination development
 – Metastatic disease vs
 – adjuvant or neoadjuvant setting

• What are the risks involved in studying combinations at the wrong clinical stage?
Phase I Combination Studies

- Expectations different than traditional monotherapy studies
 - Demands for direct PD evaluation
 - Tolerable combination with minimal response?
- Lack of appropriate tools/assays and interrogation even when tools are available
 - Just as important to know why agent isn’t working
- Rely too heavily on surrogate
 - Most imaging tools do not help us define tumor effects
NCI #7977: Trial Schema

Screening
- Informed Consent, Clinical Evaluation, Vitals, ECG, Laboratory Assessments

Cycle 1
- Biopsy
- CPT-11*
- ABT-888**
- Timeline: 1, 3, 8, 14, 21

Cycle 2 (and subsequent cycles)
- ABT-888
- Timeline: -1, 1, 8, 14, 21

Follow-up
- End of Study: 30 days after last dose of ABT-888

* CPT-11 (100 mg/m²) administered on days 1 and 8 of each cycle
** Cycle I: ABT-888 administered Day 3 through Day 14
 - Cycle II (and subsequent cycles): ABT-888 administered from Day -1 through Day 14

Tumor Collections:
- D2: 28h
- D9: 28h

Blood Collections:
- D1: 0; 3.5; 5.5; 8.5; 28; 48 h
- D8: 0, 3.5; 5.5; 8.5; 28; 48 h
PAR Levels in Tumors: Predose vs. Postdose

PAR Levels in Tumor

Relative PAR Levels in Tumor
ERCC1 Levels in Tissue

![Box plot showing normalized ERCC1 levels in tissue pre- and post-ABT 888 treatment, with data points indicating clinical benefit or no clinical benefit.](image-url)
Clinician’s Challenges

• How do we get the best drugs to use in combination?
 – How do we partner with different companies?
 – How do we get LOI approval from the NCI?
 – What are our moral and ethical obligations?
 • What if agents not best in class?
 – How many novel/novel combinations of similar targets are needed?

• Do we need the best drugs or should we just begin with proof of concept?
NCI#8420: Phase I clinical trial

• A Phase I Dose-Escalation Study of the Sonic Hedgehog Smoothened Antagonist GDC-0449 (NSC # 747691) Plus Pan-Notch Inhibitor RO4929097 (NSC # 749225) Administered in Patients with Advanced Breast Cancer
 – Karmanos Cancer Institute (Pat LoRusso, D.O. PI)
 – University of Michigan (Max Wicha, M.D./David Smith, M.D.)
 – Baylor College of Medicine (Jenny Chang, M.D.)
 – University of Mississippi (Lucio Miele, M.D., Ph.D.)
 – Johns Hopkins University (Vered Stearns, M.D./William Matsui, M.D.)
GDC-0449 administered PO daily starting Day 8

RO4929097 administered single dose PO Cycle 1, Day 1 and PO Days 1-3, 8-10 every 21 days starting Day 22 (Cycle 2, Day 1)

Biopsies obtained at baseline, Cycle 1 Day 17, and Cycle 2 Day 10

Clinically significant clinical or laboratory abnormality will be followed until resolution or until considered stable
Clinical Challenges

- So what if you are working with agents that ARE NOT best in class and the combination does not prove effective?
 - Does this limit advancing similar targeted combinations forward?
 - What if you are not preselecting tumor types with appropriate targets?
 - Is it fair to use these drugs as proof of concept?
 - Does it slow down, rather than advance, clinical development?
Combination studies: Design Attributes

• Determination of Starting Dose
 – Knowledge of single agent dosing and minimal “effective” doses
 • Is this enough to help define starting doses?
 – Justification of starting doses of drugs:
 • If standard therapy part of combo, is there justification for lowering standard doses?

– Combination toxicity
– Drug-drug interactions
– Clear definitions of endpoints to limit dosing
– Markers to follow target effects (if applicable)
Preclinical studies Directing Clinical Trials
Clinical combination of the MEK inhibitor GDC-0973 and the pan-PI3K inhibitor GDC-0941: A first-in-human phase Ib study testing daily and intermittent dosing schedules in patients with advanced solid tumors

ASCO 2011 Annual Meeting
Abstract #3005
GDC-0973 and GDC-0941 are potent, selective inhibitors

<table>
<thead>
<tr>
<th></th>
<th>GDC-0973</th>
<th>GDC-0941</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical potency</td>
<td>MEK1: 4.2 nM</td>
<td>p110α: 3 nM; p110β: 33 nM; p110δ: 3 nM; p110γ: 75 nM</td>
</tr>
<tr>
<td>Selectivity</td>
<td>>100x selectivity against 100 kinases</td>
<td>>100x selectivity against 288 kinases</td>
</tr>
</tbody>
</table>

Chou and Talalay method of calculating in vitro combination synergy
Combined effects on markers of pathway signaling, cell cycle, and apoptosis

Pathway Inhibition

<table>
<thead>
<tr>
<th>Marker</th>
<th>EC50 GDC-0973</th>
<th>EC50 GDC-0941</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDC-0973</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GDC-0941</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>p-ERK1/2</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>p-AKT(T308)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>pPRAS40(T246)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-S6(S235/236)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-S6(S240/244)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Cell cycle

<table>
<thead>
<tr>
<th>Marker</th>
<th>EC50 GDC-0973</th>
<th>EC50 GDC-0941</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclin D1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p27Kip1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>actin/GAPDH</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Apoptosis

<table>
<thead>
<tr>
<th>Marker</th>
<th>EC50 GDC-0973</th>
<th>EC50 GDC-0941</th>
</tr>
</thead>
<tbody>
<tr>
<td>BimEL(23kD)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>BimL(15kD)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>BimS(12kD)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>actin/GAPDH</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Daily dosing of GDC-0973 and GDC-0941 results in combination efficacy in xenograft models

Vehicle, GDC-0973, GDC-0941, Combination

- **A375**
 - BRAF\(^{V600E}\)
 - Melanoma
 - 6 CR (n=10/group)
 - 2 PRs, 8 CRs

- **A2058**
 - BRAF\(^{V600E}\)
 - PTEN\(^{null}\)
 - Melanoma

- **NCI-H2122**
 - KRAS\(^{G12C}\)
 - NSCLC

- **DLD-1**
 - KRAS\(^{G13D}\)
 - PIK3CA\(^{E545K}\)
 - CRC

Graphs showing mean tumor volume over time for different treatment regimens.
Intermittent dosing of GDC-0973 and GDC-0941 results in combination efficacy in xenograft models.

Graphs:
- **A375** (BRAFV600E, Melanoma):
 - 10 mg/kg Q3D + 50 mg/kg QD
 - 1 PR

- **A2058** (BRAFV600E, PTENnull, Melanoma):
 - 10 mg/kg Q3D + 100 mg/kg QD

- **NCI-H2122** (KRASG12C, NSCLC):
 - 10 mg/kg Q3D + 150 mg/kg QD

- **DLD-1** (KRASG13D, PIK3CAE545K, CRC):
 - 10 mg/kg Q3D + 50 mg/kg QD
Did the Preclinical Data Help Us?
6 patients had > 10% decrease in RECIST measurable target lesions
- 2 melanoma (BRAF WT and BRAF mutant)
- 1 prostate cancer
- 2 KRAS mutant NSCLC
- 1 KRAS mutant ovarian cancer

After the database cutoff, one uPR observed in a Cohort C KRAS mutant endometrioid cancer patient

Database cutoff April 28, 2011
Phase I Response

• Although efficacy is not an endpoint, at what point do we begin more rigorous patient selection, especially when we are bringing novel agents forward in combination?

• Best way to define tumor “effect”

• Determination of response driver: monotherapy vs combination
Patient Selection

• Could potentially slow down recruitment
• Success = speed
• Currently lack effective tools
 – Limited markers available
 – Tissue acquisition & processing
 – Assay development
 – Cost
 – Availability
• Is this a good enough starting point?
• Profiling for patient selection
 – Site selection for biopsy
Phase I/II Study of the Oral MEK 1/2 Inhibitor GSK1120212 Dosed in Combination with the Oral BRAF Inhibitor GSK2118436

Jeffrey Infante¹, Gerald Falchook², Donald Lawrence³, Jeff Weber⁴, Richard Kefford⁵, Johanna Bendell¹, Razelle Kurzrock², Geoffrey Shapiro³, Ragini Kudchadkar⁴, Georgina Long⁶, Howard Burris¹, Kevin Kim², Arthur Clements⁵, Peng Sun⁶, Bingming Yi⁶, Alicia Allred⁶, Daniele Ouellet⁶, Kiran Patel⁶, Peter Lebowitz⁶, Keith Flaherty³

¹Sarah Cannon Research Institute, Nashville, TN, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³MGH/DFCI, Boston, MA, USA; ⁴Moffitt Cancer Center, Tampa, FL, USA; ⁵Melanoma Institute of Australia and Westmead Hospital, University of Sydney, Australia; ⁶GlaxoSmithKline Research and Development, Philadelphia, PA and RTP, NC, USA
Study Design and Objectives

Part A

Drug-Drug Interaction

Objective:
- Determine the effect of MEKi (GSK212) on BRAFi (GSK436) PK

Part B

Dose Escalation

Expansion Cohorts

Objectives:
- Assess safety/tolerability
- Determine recommended Phase 2 dose
- Characterize steady-state PK
- Evaluate clinical activity

Part C

Backfill into previous escalation doses

Prior BRAF inhibitor

Colorectal BRAF+

Randomized Phase 2 trial
Waterfall Plot for Melanoma Patients without Prior BRAFi (n=71)

5 CR: 3 confirmed, 2 waiting follow-up
4 pts not shown on plot: 2 PR, 1 SD, 1 PD

Maximum % reduction from baseline measurement

- 100
- 90
- 80
- 70
- 60
- 50
- 40
- 30
- 20
- 10
- 0

GSK436 75 mg BID/GSK212 1 mg QD
GSK436 150 mg BID/GSK212 1 mg QD
GSK436 150 mg BID/GSK212 1.5 mg QD
GSK436 150 mg BID/GSK212 2 mg QD
Treatment Duration for Melanoma Patients without Prior BRAFi (n=77)

83% of patients are ongoing
Waterfall Plot for Melanoma Patients with Prior BRAFi (n=24)

Maximum % reduction from baseline measurement

- 1 pt with clinical PD, 6 pts have not reached restaging

- < 6 months prior BRAFi
- ≥ 6 months prior BRAFi
Patient Preselection

• Infante selection easy
• Trial designs focusing on patient preselection
 – One arm/one trial vs multiple arms one trial
 – Novel trial designs are pivotal
 • Multi-arm phase I drugs in a phase I trial
 • Multi-arm phase I combinations
• Challenges
 – Site selection
 – Study availability
 – Careful oversite
How does escalation scheme impact on results?

Definition of MTD of drug combination
Toxicities of drug combination
Ultimately – tumor response
Dose Level Options:
No single “right” way!
Base on best conceptual and actual data
Dose Level Options:
No single “right” way!
Base on best conceptual and actual data
Dose Escalation and Study Design (GDC 0941 + GDC 0973)

Dose Escalation Schema

- **GDC-0973 (mg) QD 21/7**
 - 20
 - 40
 - 60
 - 80

- **GDC-0941 (mg) QD 21/7**
 - 80
 - 100
 - 130

- **21/7 Dosing**
 - 2 → 4 → 5
 - 1 → 3

- **Intermittent MEK Dosing**
 - D1, 4, 8, 11, 15, 18 of a 28 day cycle
 - 100 → 125

3+3 study design
- PK sample collection
- Serial FDG-PET scans
- Tumor assessments q8 weeks
- Archival tumor tissue collection
Combination Drug Toxicity Issues

- Obviously main concern
- Often difficult when overlap in toxicity
- Makes sense to have experienced investigators
 - who know either drug(s) or drug class
- Can trial design help you?
 - Simultaneous/sequential/intermittent/pulse
 - Impact on combination effect
 - Lack appropriate models to help determine best schedule
Combination MTA Toxicity Issues

• Controversies of combination toxicity
 – Asymptomatic biochemical toxicities
 – Toxicities of mono vs combination therapy
 – Onset of toxicity
 – CTCAE toxicity criteria

• Can newly discovered toxicities of drug(s) in combination affect drug approval?
Phase I/II Study of the Oral MEK 1/2 Inhibitor GSK1120212 Dosed in Combination with the Oral BRAF Inhibitor GSK2118436

Jeffrey Infante1, Gerald Falchook2, Donald Lawrence3, Jeff Weber4, Richard Kefford5, Johanna Bendell1, Razelle Kurzrock2, Geoffrey Shapiro3, Ragini Kudchadkar4, Georgina Long6, Howard Burris1, Kevin Kim2, Arthur Clements5, Peng Sun6, Bingming Yi6, Alicia Allred6, Daniele Ouellet6, Kiran Patel6, Peter Lebowitz6, Keith Flaherty3

1Sarah Cannon Research Institute, Nashville, TN, USA; 2MD Anderson Cancer Center, Houston, TX, USA; 3MGH/DFCI, Boston, MA, USA; 4Moffitt Cancer Center, Tampa, FL, USA; 5Melanoma Institute of Australia and Westmead Hospital, University of Sydney, Australia; 6GlaxoSmithKline Research and Development, Philadelphia, PA and RTP, NC, USA
DLT: Recurrent Grade 2 Neutrophilic Panniculitis with Small/Medium Vessel Vasculitis

Deep skin punch BX

Fibrinoid necrosis with a destroyed vessel

Predominant neutrophilic inflammatory response in fatty layer of skin

Painful, red, nodular lesions associated with fevers and chills

Infante, et al., ASCO 2011
Treatment-Related AEs Occurring in ≥10% of Patients

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>Dose level (BRAFi GSK436/ MEKi GSK212)</th>
<th>75/1 (n=6)</th>
<th>150/1 (n=23)</th>
<th>150/1.5 (n=27)</th>
<th>150/2 (n=53)</th>
<th>Total (n=109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any event, n (%)</td>
<td>5 (83%)</td>
<td>21 (91%)</td>
<td>23 (85%)</td>
<td>37 (70%)</td>
<td>86 (79%)</td>
<td></td>
</tr>
<tr>
<td>Pyrexia</td>
<td>2 (33%)</td>
<td>6 (26%)</td>
<td>8 (30%)</td>
<td>18 (34%)</td>
<td>34 (31%)</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>2 (33%)</td>
<td>9 (39%)</td>
<td>5 (19%)</td>
<td>11 (21%)</td>
<td>27 (25%)</td>
<td></td>
</tr>
<tr>
<td>Chills</td>
<td>2 (33%)</td>
<td>7 (30%)</td>
<td>7 (26%)</td>
<td>8 (15%)</td>
<td>24 (22%)</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (17%)</td>
<td>5 (22%)</td>
<td>6 (22%)</td>
<td>10 (19%)</td>
<td>22 (20%)</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0</td>
<td>5 (22%)</td>
<td>5 (19%)</td>
<td>9 (17%)</td>
<td>19 (17%)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>2 (33%)</td>
<td>1 (4%)</td>
<td>6 (22%)</td>
<td>8 (15%)</td>
<td>17 (16%)</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>1 (17%)</td>
<td>1 (4%)</td>
<td>3 (11%)</td>
<td>6 (11%)</td>
<td>11 (10%)</td>
<td></td>
</tr>
</tbody>
</table>

Treatment-related AEs ≥ Grade 3 occurred in 19% of all patients; events occurring in more than 1 patient: neutropenia (3), leukopenia (2), diarrhea (2), pyrexia (2).

Infante, et al., ASCO 2011
Dose Escalation Enrollment

<table>
<thead>
<tr>
<th>Dose level (GSK436/GSK212)</th>
<th>Dose escalation enrollment</th>
<th>Expansion cohort enrollment</th>
<th>Dose-limiting toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 mg BID/1 mg QD</td>
<td>4</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>150 mg BID/1 mg QD</td>
<td>4</td>
<td>19</td>
<td>–</td>
</tr>
<tr>
<td>150 mg BID/1.5 mg QD</td>
<td>4</td>
<td>23</td>
<td>–</td>
</tr>
<tr>
<td>150 mg BID/2 mg QD</td>
<td>6</td>
<td>47</td>
<td>Recurrent Grade 2 neutrophilic panniculitis</td>
</tr>
</tbody>
</table>

Full monotherapy doses were administered in combination.
Conclusions

• Significant Challenges exist
 – Lack of preclinical and translational data for combinations
 – Multiple drugs with same target – best in class?
 – Trial designs for scheduling, ratios and dosing
 – Need to define and realize true endpoints
 – “Personalized Medicine” - patient selection
 – Cost – is it more cost effective to do it better?

THE GREATEST AND MOST LIMITED RESOURCE
THE PATIENT

Ultimate Participation Goal – THEY WANT TO LIVE!
Thank You!!!
Novel-Novel drug combination development is very challenging, and with the appropriate background information and right conditions, is a worthwhile endeavor to develop better anti-cancer therapies for patients.
Topics

- Tox – how do you dissect out, define what to do
- Where are we going with combo’s?
- Fear of targeted agents
 - Wipe out what we need
 - Stewart’s stuff
- When do you add the 2 drugs – simultaneously – add one when other begins to fail??
- How do we sequence the agents for max response
- How does PK and/or PD factor in to the equation
- What do we do with all our initial failures
- How does added toxicity impact on drug approval?
- Can bringing 2 of the not best agents together significantly enhance secondary to pathway effects?
 - AZD6244
- What guides us? How to help us? How much preclinical is enough?
- Concern – haste can make waste – if we don’t look we may not ever know and the enthusiasm of targeted therapeutic combinations may vanish
 - Not looking may hurt more than help us if we aren’t getting ravishing results
 - Not only for efficacy but exposure levels – how much exposure is going to be needed and the ratio of the combo therapies
- When not working with the best agents in combination – does it matter if we can now inhibit different targets and different pathways?
• Mistakes in design leading to erroneous recommendations can have serious consequences

• Best approaches consider: *what will be done next with this combination?*
 – Will all scenarios need same ratios/doses of the agents in combination?
Background

The RAS/RAF/MEK and PI3K/AKT/mTOR signaling pathways are frequently co-activated in malignancies.

Preclinical antitumor activity by AKT inhibition was abrogated by activating Ras mutations.

Similarly, activation of the PI3K & AKT decreases activity of inhibitors of the RAS/RAF/MEK pathway.

Hypothesis that combined inhibition will enhance antitumor activity.
Challenges of Novel Combinations

• Dose(s) and schedule selection
 – Suited for all scenarios and tumor types?
 – Better preclinical guides
 – Preliminary clinical trials

• Scheduling to circumvent toxicity
 – sequencing vs pulsing vs continuous
 • Toxicity vs Efficacy

Defining response

• Patient &/o Tumor selection