Dissecting the Obesity-Cancer Link: Mechanistic Insights from Animal Models

Stephen D. Hursting, PhD, MPH

Professor and Chair
Department of Nutritional Sciences
University of Texas at Austin
and
Professor, Department of Molecular Carcinogenesis
University of Texas MD Anderson Cancer Center
Today’s Presentation

• Links between obesity, energy balance and cancer in animal models
• Lessons from studies in mice regarding molecular targets and strategies for breaking the obesity-cancer link
 - Calorie Restriction
 - Diet- and Genetically-Induced Obesity
 - Physical Activity
 - Calorie Restriction Mimetics (mTOR/IGF-1R inhibitors; bioactive food components)
Disclosure Information
Stephen D. Hursting

I have no financial relationships to disclose.
I will discuss an experiment using Rad001 (Everolimus) in my presentation.
The Shape of Things to Come. The Economist 12/11/03

(http://www.economist.com/displaystory.cfm?story_id=2282754)
Metabolic Syndrome

Describes a state of metabolic dysregulation characterized by:

- Insulin resistance
- Elevated bioavailable IGF-1
- Pro-inflammatory state (elevated CRP, cytokines)
- Altered adipokines (elevated leptin)
- Pro-coagulant changes
- Dyslipidemia (hypertriglyceridemia)

Associated with many types of cancer
(Calle, et al., NEJM 2003: 14% of cancer deaths in men; 20% in women due to overweight/obesity)
Energy Balance and Cancer Prevention

Energy Balance:
\[\text{kcal in} = \text{kcal out} \]

- Amount
- Type
- Pattern

- Physical Activity
- Routine Metabolism
- Thermoregulation
- Growth
- Storage
Calorie Restriction (~20%) Extends Lifespan in Multiple Species

% Increase in Longevity (versus *ad libitum*-fed controls)
Control

<table>
<thead>
<tr>
<th>8.5 yrs.</th>
<th>22.0 yrs.</th>
</tr>
</thead>
</table>

| 9.0 yrs. | 22.4 yrs. |

CR

<table>
<thead>
<tr>
<th>8.5 yrs.</th>
<th>22.0 yrs.</th>
</tr>
</thead>
</table>

| 9.0 yrs. | 22.4 yrs. |

Weindruch: CR Study in Rhesus Monkeys
(Colman, et al., *Science* 2009)
Calorie Restriction Inhibits Spontaneous Tumorigenesis in Multiple Model Systems

<table>
<thead>
<tr>
<th>Experimental System</th>
<th>Animals</th>
<th>Degree of Calorie Restriction</th>
<th>Ratio of incidence in AL/CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammary</td>
<td>DBA mice</td>
<td>33%</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>MMTV-neu TG</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMTV-Wnt-1 TG</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wistar rats</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammary</td>
<td>C3H mice</td>
<td>33%</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Swiss mice</td>
<td>20%</td>
<td>7</td>
</tr>
<tr>
<td>Liver</td>
<td>AK mice</td>
<td>25%</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>F344 rats</td>
<td>25%</td>
<td>9.3</td>
</tr>
<tr>
<td>Leukemia</td>
<td>CD1</td>
<td>40%</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>Sencar mice</td>
<td>40%</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Wistar rats</td>
<td>20%</td>
<td>6</td>
</tr>
<tr>
<td>Skin</td>
<td>Wistar rats</td>
<td>20%</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Swiss mice</td>
<td>20%</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>H:NMRI mice</td>
<td>20%</td>
<td>4.1</td>
</tr>
<tr>
<td>Pituitary</td>
<td>COBS rats</td>
<td>30%</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>K-ras x Ink4A mice</td>
<td>30%</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>K5-COX-2 TG mice</td>
<td>30%</td>
<td>5.5</td>
</tr>
<tr>
<td>Pancreas</td>
<td>F344 rats</td>
<td>40%</td>
<td>1.7</td>
</tr>
<tr>
<td>Testes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cancer: A Complex Foe

The essential aberrations of cancer

- Dysregulated growth signals and cellular energetics
- Inflammation
- Genomic instability
- Tissue invasion and metastasis
- Sustained angiogenesis
- Limitless replicative potential
- Evading growth suppression, apoptosis, and immune surveillance

Adapted from: Hanahan & Weinberg, Cell (2000) and Cell (2011)
Modeling Energy Balance and Human Cancer in Mice by Altering Key Genes and Pathways

Hursting, et al., *Mutation Res*, 2005
Growth Factor Levels and MMTV-Wnt-1 TG Mammary Tumor Growth in CR, Overweight and Diet-Induced Obese (DIO) Mice

<table>
<thead>
<tr>
<th></th>
<th>IGF-1 (ng/ml)</th>
<th>Insulin (pg/ml)</th>
<th>Leptin (ng/ml)</th>
<th>Adiponectin (ng/ml)</th>
<th>L/A</th>
<th>Tumor Vol (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR (30%)</td>
<td>390</td>
<td>380</td>
<td>1.9</td>
<td>9.4</td>
<td>0.2</td>
<td>120</td>
</tr>
<tr>
<td>(29% body fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>526</td>
<td>398</td>
<td>5.3</td>
<td>9.2</td>
<td>0.6</td>
<td>510</td>
</tr>
<tr>
<td>(35% body fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIO</td>
<td>718</td>
<td>596</td>
<td>16</td>
<td>9.1</td>
<td>1.8</td>
<td>1485</td>
</tr>
<tr>
<td>(47% body fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n=12 mice/group

Adapted from: Nunez, et al., *Nutrition and Cancer*, 2007

Dr. Nomeli Nunez
Genetic Reduction of Systemic IGF-1

~75% of IGF-1 in serum -- liver

Ecuadorians with Laron Syndrome Have Very Low IGF-1, Increased Longevity, and Virtually No Cancer or Diabetes. NY Times 2/16/11.

S. Yakar and D. LeRoith, PNAS, 1999
Mammary Tumor Growth in Control and Liver IGF-1 Deficient (LID) Mice

Dr. Nikki Ford

Serum IGF-1 Levels

Control

LID

LID/CR

LID/DIO

Tumor vol (mm³)

Days after tumor cell injection

Dr. Nikki Ford
Diabetic A-Zip/F-1 Mice Lack WAT But Display Increased Susceptibility to Mammary and Skin Carcinogenesis

Serum:
- Insulin, IGF-1
- Cytokines
- Adipokines

Tissue:
- pAkt
- pmTOR
Dietary Energy Balance Modulation of Akt/mTOR Signaling (normal and tumor tissue)

Skin
Liver
Prostate
Colon
Pancreas
Mammary

Hursting, et al., Cancer Res, 2007
Moore, et al., Cancer Prev Res, 2008;
Olivo-Marston, et al., Mol Carcinogenesis 2009
deAngel, et al., Mol Carcinogenesis, in press
The Effect of IGF-1 Infusion on Growth of Orthotopically Transplanted MMTV-Wnt-1 Mammary Tumors in Calorie Restricted Mice

Consistent with Kalaany and Sabatini (*Nature* 2009)—PIK3CA ablates CR effects

Phenotypes of Genetically Obese \textit{db/db} and \textit{ob/ob} Mice

- Morbid obesity - early onset
- Hyperphagic –2X the intake of controls
- Hyperglycemic
- Hyperinsulinemic, but low IGF-1 and HMW adiponectin
- \textit{db/db}: Hyperleptinemic/leptin resistant - mutant leptin receptor
- \textit{ob/ob}: Hypoleptinemic; no circulating WT leptin
Wnt-1 Mammary Tumor Growth Is Increased in \(db/db \) Mice but Suppressed in \(ob/ob \) Mice

(Zheng, et al., Endocr Relat Cancer, 2011)

<table>
<thead>
<tr>
<th></th>
<th>(ob/ob)</th>
<th>(WT)</th>
<th>(db/db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin:</td>
<td>Ê Ê Ê</td>
<td>Ê</td>
<td>Ê Ê Ê</td>
</tr>
<tr>
<td>IGF-1:</td>
<td>í</td>
<td>Ê</td>
<td>í</td>
</tr>
<tr>
<td>L/A:</td>
<td>í</td>
<td>Ê</td>
<td>Ê Ê Ê</td>
</tr>
<tr>
<td>Tumor Wt (g)</td>
<td>0.21 ± 0.07</td>
<td>0.62 ± 0.13</td>
<td>1.68 ± 0.33</td>
</tr>
</tbody>
</table>
Converging Signaling Pathways

Obesity/Insulin Resistance

Insulin, IGF-1

IRS

PI3K

Akt

JAK2

STAT3

AdipoR1

AmphoR1

AMPK

TSC1

TSC2

mTOR

Rapamycin
Survival plots for male and female mice, comparing control mice to those fed rapamycin (2.4 mg/kg/day) in the diet starting at 600 days of age, pooling across the three test sites.
CR and Rapamycin (but not Treadmill Exercise) Reverse the Effects of DIO on Transplanted Wnt-1 Tumor Growth

Tumor Weight (mg)

<table>
<thead>
<tr>
<th>Group</th>
<th>Weight (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>61 ± 19</td>
</tr>
<tr>
<td>Treadmill Exercise</td>
<td>347 ± 211</td>
</tr>
<tr>
<td>DIO</td>
<td>394 ± 243</td>
</tr>
<tr>
<td>+ Rapamycin</td>
<td>Not done</td>
</tr>
<tr>
<td>- Rapamycin</td>
<td>92 ± 23</td>
</tr>
</tbody>
</table>

n=15 mice/group

Nogueria, et al., *Endocr Relat Cancer*, in press
Mouse Models of Physical Activity and Carcinogenesis

CR, Voluntary Wheel Running Decreases Polyp Formation in \(APC^{\text{min}} \) Mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Polyps (SE)</th>
<th>Polyps > 2mm (SE)</th>
<th>Survival 100 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=20)</td>
<td>26.2 (2)<sup>a</sup></td>
<td>20.3 (1.8)<sup>a</sup></td>
<td>62<sup>a</sup></td>
</tr>
<tr>
<td>Wheel (n=21)</td>
<td>21.2 (2.3)<sup>b</sup></td>
<td>14.2 (2)<sup>b</sup></td>
<td>100<sup>b</sup></td>
</tr>
<tr>
<td>CR (n=20)</td>
<td>3.8 (0.6)<sup>c</sup></td>
<td>1.1 (0.4)<sup>c</sup></td>
<td>100<sup>b</sup></td>
</tr>
</tbody>
</table>

The mTOR Inhibitor RAD001 (Everolimus) Inhibits Wnt-1 Mammary Tumor Growth in Lean, Control and Obese Mice

DeAngel, et al. Mol Carcinogenesis, in press
Cancer: A Complex Foe

Energy balance impacts the essential aberrations of cancer

- Dysregulated growth signals and cellular energetics
- Inflammation
- Genomic instability
- Tissue invasion and metastasis
- Sustained angiogenesis
- Limitless replicative potential
- Evading growth suppression/apoptosis and immune surveillance

Adapted from: Hanahan & Weinberg, Cell (2000) and Cell (2011)
Dynamics of epithelial tissues: epithelial-mesenchymal transition (EMT)

Specific epithelial cells receive signals to differentiate.

Cells protrude out of epithelium, disassemble cell-cell junctions.

Cells become ‘mesenchymal’ (invasive and migratory) and then differentiate to a new cell type in another location.

Does Obesity Promote EMT? Enrich Breast Cancer Stem Cells?
Effects of Energy Balance on M-Wnt (Claudin-low) and E-Wnt (Basal-like) Mammary Tumors and EMT Markers (Dunlap, et al., Cancer Res, submitted)
Energy Balance Modulates Adipocyte/Tumor Cell Interactions in M-Wnt (Claudin-low) Mammary Tumor Cells

Sarah Dunlap, et al., Cancer Res, submitted
Targets and Pathways for Intervention

Inflammation

Cell Signaling

Epigenetics

Breaking the Obesity Cancer Link
Acknowledgements

University of Texas at Austin
 John DiGiovanni, Linda deGraffenried, Nomeli Nunez, Michele Forman

University of Texas-M.D. Anderson Cancer Center
 Sue Fischer, Cheryl Walker, Powel Brown, Ernie Hawk

Mt. Sinai Medical Center
 Derek LeRoith, Shoshana Yakar

National Cancer Institute
 Lyuba Varticovski, Chuck Vinson, Curtis Harris

Cleveland Clinic/Case Western
 Ofer Reizes

University of Kansas Medical Center
 Carol Fabian, Bruce Kimler, Brian Petroff

Funding: National Cancer Institute, National Institute of Environmental Health Sciences, Breast Cancer Research Foundation, Susan G. Komen Foundation