Challenges in Developing Clinical Biomarker Tests

Lessons Learned from Single Analyte Tests

Bruce E. Johnson, MD
Dana-Farber Cancer Institute
Lessons Learned from Single Analyte Tests

1. EGFR Mutation Testing
2. BRAF and HER2 Testing
3. Chromosomal Rearrangements
Epidermal Growth Factor Receptor Mutations

25 of 31 Patients with Response to Gefitinib had EGFR Mutation

Pao et al 2004

The NEW ENGLAND JOURNAL of MEDICINE
Lynch et al 2004

PNAS

Science

Paez et al. 2004
Epidermal Growth Factor Receptor Mutation Testing

• By August 2004 BWH, DFCI, and MGH referred patient material through the Laboratory of Molecular Medicine (LMM) at the Harvard Medical School/Partners HealthCare Center for Genetics for EGFR Mutation Testing
 – BWH and MGH Pathology, tumor slides DNA sent to LMM, tracing sent back to Path, interpreted, issued report

• September 2005 Genzyme Corporation announced the commercial availability of an EGFR mutation test to help identify patients likely to respond to therapies targeted for the treatment of non-small cell lung cancer (NSCLC).
 – Cells from specific tumor-rich areas are microdissected, followed by DNA extraction, PCR amplification, and bi-directional sequencing of exons 18 through 21 in tyrosine kinase domain of the EGFR gene. A team of 17 surgical pathologists and Ph.D. geneticists review the EGFR mutation analyses
SURVEYOR Analysis of EGFR and Sequencing Of 3 Patient Specimens with 3 Distinct Variants

A

B

C

L858R

L861Q

R836R

Tumor Responses to Afatinib in EGFR Mutant NSCLC

Yang et al. Lancet Oncology 2012; 13:539
Genotyping Timeline

2004
EGFR Mutations Discovered

2004
EGFR Testing Started in LMM in Cambridge

2005
KRAS Testing Started In LMM in Cambridge

2008
BRAF, HER2, PIK3CA, ALK Added

2009
LCMC Starts, Added NRAS, MEK, AKT1 and MET amp
Gefitinib Approved EGFR Mutant Lung Cancer by EMA*

2011
Crizotinib Approved ALK+ Lung Cancer

2013
Erlotinib and Afatinib Approved EGFR+ Lung Cancer

2013
Oncopanel Testing Initiated
Lessons Learned from Single Analyte Tests

1. EGFR Mutation Testing
2. BRAF and HER2 Testing
3. ALK and ROS1 Chromosomal Rearrangements
Tumor Responses to Vemurafenib in V600E BRAF Mutant Melanoma

Sossman et al. NEJM 2012; 366:707
Tumor Responses to Neratinib plus Temsirolimus in HER2 Mutated NSCLC

Gandhi et al. J Clin Oncol 2014; 32:68
Genotyping Timeline

- **2004**
 - EGFR Mutations Discovered
 - EGFR Testing Started in LMM in Cambridge

- **2005**
 - KRAS Testing Started in LMM in Cambridge
 - EGFR Testing at Genzyme

- **2004**
 - EGFR Testing Started in LMM in Cambridge

- **2008**
 - BRAF, HER2, PIK3CA, ALK Added

- **2009**
 - LCMC Starts, Added NRAS, MEK, AKT1 and MET amp

- **2011**
 - Crizotinib Approved ALK+ Lung Cancer

- **2013**
 - Oncopanel Testing Initiated
 - Crizotinib Approved ALK+ Lung Cancer
 - Erlotinib and Afatinib Approved EGFR+ Lung Cancer
Lessons Learned from Single Analyte Tests

1. EGFR Mutation Testing
2. BRAF and HER2 Testing
3. ALK and ROS1 Chromosomal Rearrangements
Tumor Responses to Crizotinib in ALK Rearranged Non-Small-Cell Lung Cancer

Disease progression | Stable disease | Partial response | Complete response

A Percent Change in Tumor Burden

Percent Change from Baseline

-100 -80 -60 -40 -20 0 20 40 60

-30%

Patient No.

Kwak et al. 2010 363(18) 1693-1703
Tumor Responses to Crizotinib in ROS1-Rearranged Non–Small-Cell Lung Cancer.

ALK Chromosomal Rearrangements

• FISH Testing

 – 2011 The FDA granted accelerated approval to crizotinib for the treatment of patients with locally advanced or metastatic NSCLC that is ALK-positive as detected by an FDA-approved test. The FDA approved the Vysis ALK Break-Apart FISH Probe Kit¹

 – The Vysis ALK Break Apart FISH Probe Kit is intended to detect rearrangements involving the ALK gene via fluorescence in situ hybridization (FISH) in formalin-fixed paraffin-embedded (FFPE) NSCLC tissue specimens. If a chromosome rearrangement at the 2p23 ALK breakpoint region has occurred, one orange and one green signal separated by at least two signal diameters will be seen. If the average percent positive cells is ≥ 15% (# 15/100), the sample is considered positive²

¹http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm376058.htm

²http://www.abbottmolecular.com/static/cms_workspace/pdfs/US/Vysis_ALK_FISH_Probe_Kit_PI.pdf
ALK Chromosomal Rearrangements

• FISH Testing
 – Break-apart FISH using green and red labeled sequences flanking the ROS1 gene. Images were captured and positive cases were defined as tumors harboring more than 15% of cells with split signals.

Bergethon J Clin Oncol 2012; 30:863
Genotyping Timeline

- **2004**: EGFR Mutations Discovered
- **2004**: EGFR Testing Started in LMM in Cambridge
- **2005**: EGFR Testing at Genzyme
- **2004**: KRAS Testing Started in LMM in Cambridge
- **2008**: BRAF, HER2, PIK3CA, ALK Added
- **2009**: LCMC Starts, Added NRAS, MEK, AKT1 and MET amp
- **2009**: Gefitinib Approved EGFR Mutant Lung Cancer by EMA*
- **2010-2011**: R0S1 Testing Begins
- **2010-2011**: Crizotinib Approved ALK+ Lung Cancer
- **2013**: Oncopanel Testing Initiated
- **2013**: Erlotinib and Afatinib Approved EGFR+ Lung Cancer

EMA: European Medicines Agency
Lessons Learned from Single Analyte Tests

1. EGFR Mutation Testing
2. BRAF and HER2 Testing
3. ALK and ROS1 Chromosomal Rearrangements
Tumor Responses to Afatinib in EGFR Mutant NSCLC

Yang et al. Lancet Oncology 2012; 13:539
EGFR-TKI Approvals for EGFR mutant NSCLC

- The FDA approved erlotinib for the first-line treatment of patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 (L858R) substitution mutations. This indication for erlotinib is being approved concurrently with the cobas® EGFR Mutation Test¹

- The FDA approved afatinib for the first-line treatment of patients with metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 L858R substitution mutations as detected by an FDA-approved test. The FDA approved the therascreen EGFR RGQ PCR Kit (QIAGEN) for detection of these EGFR 19 mutations²

¹www.cancer.gov/cancertopics/druginfo/fda-erlotinib-hydrochloride
²www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm360574.htm
Mutation Detection Accuracy

• Cobas EGFR Mutation Test Kit
 – The cobas® EGFR Mutation Test is a real-time PCR test for the qualitative detection and identification of prespecified mutations in exons 18, 19, 20 and 21 of the EGFR gene in DNA derived from formalin-fixed paraffin-embedded (FFPET) NSCLC tumor tissue.

• Therascreen EGFR RGQ PCR Kit
 – The therascreen EGFR RGQ PCR Kit is a real-time PCR test for the qualitative detection of 29 different exon 19 deletions and exon 21 (L858R) substitution mutations of EGFR gene in DNA derived from formalin-fixed paraffin-embedded (FFPE) NSCLC tumor tissue.

1http://molecular.roche.com/assays/Pages/cobasEGFRMutationTest.aspx
Foundation Medicine Test ($5,800)

- Applies next-generation sequencing in a unique manner to identify all 4 types of genomic alterations across drivers of solid tumors
- Sequences the coding region of 315 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer to a typical median depth of coverage of greater than 500X.
- FoundationOne detects all classes of genomic alterations, including base substitutions, insertions and deletions (indels), copy number alterations (CNAs) and rearrangements using routine FFPE sample

www.foundationmedicine.com
Oncopanel Gene List in 2014

Exons: ABL1, AKT1, AKT2, AKT3, ALK, ALOX12B, APC, AR, ARAF, ARID1A, ARID1B, ARID2, ASXL1, ATM, ATRX, AURKA, AURKB, AXL, B2M, BAP1, BCL2, BCL2L1, BCL2L12, BCL6, BCOR, BCORL1, BLM, BMPR1A, BRAF, BRCA1, BRCA2, BRD4, BRIP1, BUB1B, CARD11, CBL, CBLB, CCND1, CCND2, CCND3, CCNE1, CD274, CD58, CD79B, CDC73, CDH1, CDK1, CDK2, CDK4, CDK5, CDK6, CDK9, CDKN1A, CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEK2, CIITA, CREBBP, CRKL, CRLF2, CRTC1, CRTC2, CTNNB1, CUX1, CYLD, DDB2, DDR2, Dicer1, DIS3, DMD, DNMT3A, EGFR, EP300, EPHA3, EPHA5, EPHA7, ERB2, ERBB3, ERBB4, ERCC2, ERCC3, ERCC4, ERCC5, ESR1, ETV1, ETV4, ETV5, ETV6, EWSR1, EXT1, EXT2, EZH2, FAM46C, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FAS, FBXW7, FGFR1, FGFR2, FGFR3, FGFR4, FH, FKBp9, FLCN, FLT1, FLT3, FLT4, GATA3, GATA4, GATA6, GLI1, GLI2, GLI3, GNA11, GNAQ, GNAS, GPC3, GSTM5, H3F3A, HNF1A, HRAS, ID3, IDH1, IDH2, IGF1R, IKZF1, IKZF3, JAK2, JAK3, KDM6A, KDM6B, KDR, KIT, KRAS, LMO1, LMO2, LMO3, MAP2K1, MAP2K4, MAP3K1, MAPK1, MCL1, MDM2, MDM4, MEF2B, MEN1, MET, MITF, MLH1, MLL, MLL2, MPL, MSH2, MSH6, Mtor, MYH, MYB, MYBL1, MYC, MYCL1, MYCN, MYD88, NBN, NF1, NF2, NFE2L2, NFKBIA, NFKBIZ, NKX2-1, NOTCH1, NOTCH2, NPM1, NRAS, NTRK1, NTRK2, PALB2, PARK2, PAX5, PDCD1LG2, PDGFRα, PDGFRβ, PHF6, PHOX2B, PIK3C2B, PIK3CA, PIK3R1, PIM1, PMS1, PMS2, PNRC1, PRAE, PRDM1, PRF1, PRKAR1A, PRKCI, PRKCZ, PRKDC, PRPF40B, PRPF8, PSMD13, PTCH1, PTEN, PTK2, PTPN11, RAD21, RAF1, RARA, RB1, RBL2, REL, RET, RFWD2, RHPN2, ROS1, RPL26, RUNX1, SBDS, SDHAF2, SDHB, SDHC, SDHD, SETBP1, SETD2, SF1, SF3B1, SH2B3, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC1A, SMC3, SMO, SOCS1, SOX2, SOX9, SRC, SRSF2, STAG1, STAG2, STAT3, STAT6, STK11, SUFU, SUZ12, SYK, TCF3, TCF7L1, TCF7L2, TERT, TET2, TNFAIP3, TP53, TSC1, TSC2, U2AF1, VHL, WRN, WT1, XPA, XPC, XPO1, ZNF217, ZNF708, ZRSR2.

Introns: ABL1, AKT3, ALK, BCL2, BCL6, BRAF, CIITA, EGFR, ETV1, EWSR1, FGFR1, FGFR3, FUS, IGH@, IGK@, IGL@, JAK2, MLL, MYC, NPM1, PAX5, PDGFRα, PDGFRβ, RAF1, RARA, RET, ROS1, TRA@, TRB@, TRG@.

Courtesy of Neal Lindeman
Genotyping Timeline

2004
- EGFR Mutations Discovered
- EGFR Testing Started in LMM in Cambridge

2005
- KRAS Testing Started in LMM in Cambridge
- EGFR Testing at Genzyme

2008
- BRAF, HER2, PIK3CA, ALK Added

2009
- LCMC Starts, Added NRAS, MEK, AKT1 and MET amp

2011
- Crizotinib Approved ALK+ Lung Cancer

2013
- Oncopanel Testing Initiated
- Gefitinib Approved EGFR Mutant Lung Cancer by EMA*
- Erlotinib and Afatinib Approved EGFR+ Lung Cancer
- Crizotinib Approved ALK+ Lung Cancer

Lessons Learned from Single Analyte Tests

1. EGFR Mutation Testing
2. BRAF and HER2 Testing
3. Chromosomal Rearrangements