Challenges with Preclinical Models
Adoptive Cell Therapies
Helen Heslop
Disclosure

• Licensing agreement with Cell Medica for EBV-specific T cells in NHL and nasopharyngeal cancer

• Collaborative Research Agreement with Celgene for genetically modified T cells

• Founder Virocyte - third party monovirus T cells
Challenges with Preclinical Models

• In vitro studies not always predictive
• Murine models
 – Differences in immune systems
 – Differences in target antigens
• Immunodeficient mice
 – Can engraft human tumors but lack all immune components
 – Not predictive for off-target effects
Adoptive cell therapy against EBV-related malignancies: a survey of clinical results
Merlo et al, Expert Opinion 2008

“It is somehow surprising, for example, that the clinical transfer of anti-EBV adoptive immunotherapy has advanced very rapidly, bypassing a rigorous animal preclinical evaluation.”
Viral Infections Post Transplant

- Major cause morbidity and mortality
- Pharmacologic therapy not available for all viruses and expensive
- Recurrences when therapy stopped
- Clearly related to lack of virus specific T cell response
Generating Virus Specific T Cells

- Repeated stimulation with viral antigens expressed on antigen presenting cell
- Expand viral-antigen specific T-cells
- T cells with specificities for other antigens will not survive
EBV Lymphoma post BMT

- Incidence 1-25% following mismatched or unrelated donor BMT
- Predisposing factors:
EBV-specific T-cell Generation

1. LCL generation (4-6 weeks)

2. CTL expansion (4-6 weeks)

3. QC/QA (1-2 weeks)

Antitumor activity in immunodeficient mouse model

Activity of transplanted CD8+ versus CD4+ cytotoxic T cells against Epstein-Barr virus-immortalized B cell tumors in SCID mice.

Rencher SD, Slobod KS, Smith FS, Hurwitz JL

Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

PMID: 7916506 [PubMed - indexed for MEDLINE]

No mouse model for GVHD or other toxicity
EBV Specific T Cell IND 1993

- No toxicity models of EBV infection/cancers
- Submitted with human preclinical data
- FDA concern re risk of alloreactivity
 - Requested data on risk
 - Assay for alloreactivity as release criteria
Risk of Alloreactivity

• VSTs manufactured from transplant donor
• Donor chosen by transplant team as best available match
• Dose escalation study
 – Initial dose less than used in donor lymphocyte infusion
• Culture conditions should select against alloreactive cells
Assay for Alloreactivity

• No validated assay
• Elected to manufacture PHA blasts from recipient and use as target in cytotoxicity assay
• Release criteria <10% cytotoxicity
Assay for Alloreactivity

• Used in over 100 lines
• One line failed to meet criteria with cytotoxicity >50%
• Limitation
 – Cannot manufacture PHA blasts from SCID patients
 – Used parent cells
EBV T Cells Post HSCT

Small numbers $(10^4 - 10^5 / \text{kg})$
- Restore virus-specific immunity
- Reduce virus load
- Cure disease in over 80%
- Long-lasting protection
- Low toxicity
Trivirus-Specific T Cells
EBV, CMV and Adenoviruses

- 3 most common viral complications after HSCT
- Most donors immune
- Have detectable levels of T cells
Generation Of Multivirus-specific VSTs Using Ad5f35 Vectors

EBV-B95-8 → Ad5f35pp65 → B cell → EBV-LCLs → PBMCs → Weekly antigen (x2-4) → 4 weeks → Tri-VSTs
• Immunodeficient mouse models for EBV lymphoma
 – Can model antitumor activity (but already had clinical data)
 – Cannot model GVHD
• No models for multiple viral infections post transplant
In vitro expanded donor-derived virus-specific T cells targeting Adv, EBV, CMV
– Reconstituted antiviral immunity for EBV, CMV and Adv
– Effective in clearing disease

Clinical Outcome of Trivirus T Cells

Leen et al, Nat Med 2006
3rd Party VST Therapy

Bank of VSTs

Cryopreservation

G-Rex 10

Infected Patients

HLA - A

HLA - B

HLA - DR

HLA - A
Most Closely HLA Matched Allogeneic Virus Specific T-Lymphocytes to Treat Persistent Reactivation or Infection with Adenovirus, CMV and EBV after Hemopoietic Stem Cell Transplantation

CAGT
- Helen Heslop
- Ann Leen
- Clio Rooney
- Cath Bollard
- Malcolm Brenner
- Adrian Gee

Other Sites

<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDACC</td>
<td>EJ Shpall</td>
</tr>
<tr>
<td>Harvard</td>
<td>Joe Antin, B Dey</td>
</tr>
<tr>
<td>Duke</td>
<td>Paul Szabolcs</td>
</tr>
<tr>
<td>CHLA</td>
<td>Neena Kapoor</td>
</tr>
<tr>
<td>Children’s Boston</td>
<td>Sun Yun Pai</td>
</tr>
<tr>
<td>Miami</td>
<td>Gary Kleiner</td>
</tr>
<tr>
<td>Hackensack</td>
<td>Scott Rowley</td>
</tr>
</tbody>
</table>
Third Party VSTs 2008

- More theoretical risk of alloreactivity
- Treating refractory disease
- PHA blasts not feasible
 - Patients post transplant
 - Manufacturing time
- No release criteria for alloreactivity
At day 42: Overall
74.0 (95% CI: 58.5-89.5)

At day 42:
CMV 73.9 (95% CI: 51.2-96.6)
EBV 66.7 (95% CI: 36.9-96.5)
AdV 77.8 (95% CI: 53.7-100)

Leen et al Blood 2013
Alloreactivity of Virus Specific T Cell Lines

- Over 90% lines and 45% of virus-specific T-cell clones cross-react against allo-HLA molecules as measured by gamma interferon production.
- T-cell receptor (TCR) gene transfer confirmed that allo-HLA reactivity and virus specificity were mediated via the same TCR.

Amir et al Blood 2010
Are Our VSTs Alloreactive?

- Panel of 44 T-APCs
- Stimulated with unlabeled T-APCs
- Responder cells that produced both TNF and GIFN
- Virus-specific CD4\(^+\) and CD8\(^+\) T cells displayed moderate reactivity with 1 to 5 T-APCs expressing the recipient's HLA allele

Melenhorst et al Blood 2010
Was There Alloreactivity In vivo

- 153 donor-derived lines
 - 28 haploidentical
 - 43 unrelated donors mismatched at one or more antigens
- No denovo GVHD
- Grade 1-2 GVHD reactivations
 - 13/153 overall
 - 6/71 mismatched

Melenhorst et al Blood 2010
Alloreactivity

- In vitro assays do not predict in vivo reactivity
- Preclinical studies are not always predictive
- Serendipity in choice of release assay
CRS after VST

- Rare compared with CAR Therapy
 - 2 out of 166 cases
- Correlates with bulky disease
18 year old post 9/10 URD
Developed EBV PTLD
• 2 weeks later, fever and hypotension requiring 2 inotropes
• Rapid resolution after steroids/Entanercept
Clinical Response

Pre VSTs

6 weeks post VSTs
Inflammation During Response - BKV

Viral load
- **Blood**: Decrease from wk-3 to wk4, then increase to wk6.
- **Urine**: Increase from wk-3 to wk4, then decrease to wk6.

pVSTs
- **Blood**: Increase from wk-3 to wk4, then decrease to wk6.
- **Urine**: Decrease from wk-3 to wk4, then increase to wk6.

BKV copies/ml
- **Blood**: Peaks at wk2 and wk3.
- **Urine**: Peaks at wk1 and wk2.

T cells
- **Bladder-derived T cells**: Increase from wk-3 to wk4, then decrease to wk6.

Graphs
- **SFC/5x10^5**
- **wk5**
Published Studies with Donor-derived VSTs

- Over 450 patients in over 30 studies
- 58 with GVHD mostly Grade I or II
<table>
<thead>
<tr>
<th>Virus</th>
<th>Responses</th>
<th>GVHD</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV</td>
<td>17/33</td>
<td>None</td>
<td>Haque et al 2007</td>
</tr>
<tr>
<td>EBV</td>
<td>4/5</td>
<td>None</td>
<td>Doubrovina et al 2012</td>
</tr>
<tr>
<td>EBV</td>
<td>8/10</td>
<td>None</td>
<td>Vickers et al 2014</td>
</tr>
<tr>
<td>EBV,CMV,ADV</td>
<td>37/50</td>
<td>8/50</td>
<td>Leen et al 2013</td>
</tr>
<tr>
<td>EBV,CMV,ADC</td>
<td>4/6</td>
<td>None</td>
<td>Uhlin et al 2012</td>
</tr>
<tr>
<td>EBV,CMV,ADV</td>
<td>20/20</td>
<td>1/20</td>
<td>Withers et al Tandem BMT 2016</td>
</tr>
<tr>
<td>EBV,CMV,ADV, BK,HHV6</td>
<td>20/22</td>
<td>2/22</td>
<td>Tzannou et al Tandem BMT 2016</td>
</tr>
</tbody>
</table>
Adoptive cell therapy against EBV-related malignancies: a survey of clinical results
Merlo et al, Expert Opinion 2008

“It is somehow surprising, for example, that the clinical transfer of anti-EBV adoptive immunotherapy has advanced very rapidly, bypassing a rigorous animal preclinical evaluation.”
T Cell Therapy For Lymphoma

Heterogeneous tumor

PRAME
MAGEA4
SSX2
Survivin
NYESO1

MultiTAA
T cells
Tumor Antigen Specific T Cells
2011

Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma

Ulrike Gerdemann¹, Usha Katari¹, Anne S Christin¹, Conrad R Cruz¹, Tamara Tripic¹, Alexandra Rousseau¹, Stephen M Gottschalk¹, Barbara Savoldo¹, Juan F Vera¹, Helen E Heslop¹, Malcolm K Brenner¹, Catherine M Bollard¹, Cliona M Rooney¹ and Ann M Leen¹

¹Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital, Texas Children’s Hospital, Houston, Texas, USA

• Risk of cross reactivity
 – Analysis for homology of target antigens and other proteins

Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy.

Antigen Escalation Phase = fixed dose 5x10^6/m^2 - 2 pts/stage:
Day 0: PRAME-specific T cells
Day 28: PRAME and SSX-specific T cells

Stage Two:
Day 0: PRAME and SSX-specific T cells
Day 28: PRAME/SSX/MAGE-specific T cells

Stage Three:
Day 0: PRAME/SSX/MAGE-specific T cells
Day 28: PRAME/SSX/MAGE/NYESO1-specific T cells

Stage Four:
Day 0: PRAME/SSX/MAGE/NYESO1-specific T cells
Day 28: PRAME/SSX/MAGE/NYESO1/Survivin-specific T cells
Conclusions

• With VST and TAA studies limited preclinical models to assess alloreactivity and other risks
• Some preclinical models did not correlate with in vivo effects
• Need clinical testing
Strategies to Reduce Risk

• Start with low doses
• Antigen escalation
• Intervals between patients
• Ability to ablate cells (or neutralize cytokines) if adverse effects ensue
 – Steroids
 – Suicide gene
 – Tociluzimab
Acknowledgements

TRL Lab PIs
- Cliona Rooney
- Malcolm Brenner
- Ann Leen
- Stephen Gottschalk
- Nabil Ahmed
- Juan Vera
- Carlos Ramos
- Caroline Arber

Transplant Service
- Bob Krance
- Kathy Leung
- Caridad Martinez
- George Carrum
- Ram Kamble
- Premal Lulla
- Swati Naik

TRL Laboratory
- Lisa Rollins
- Olga Dakova

Clinical Research
- Bambi Grilley
- Bridget Medina
- Milica Stojavic
- Kristal Black
- Yu-Feng Lin
- Vicky Torrano
- Amy Reyna

GMP Laboratory
- Adrian Gee
- Natasha Lapteva
- Debbie Lyon
- Zhuyong Mei

TRL Junior Faculty/Postdocs/PhD students
- Bilal Omer
- Robin Parihar
- Rayne Rouse
- Meena Hegde
- Andras Hegde
- Paulina Velasquez
- Chris Derenzo
- Max Mamonkin
- Serena Perna
- Ulrike Gerdemann
- Anastasia Papadopolou
- Ifigeneia Tzannou
- Sandhya Sharma
- Minhtran Ngo

T cell Laboratory
- Huimin Zhang
- Tamara Trpic
- Pallavi Mohapatra
- Birju Mehta

SCCT CHALLAH STUDY
- Joe Antin
- B Dey
- David Avigan
- Paul Szabolcs
- EJ Shpall
- Neena Kapoor
- EMMES
- Adam Mendizabal
- NMDP
- Dennis Confer
- Cath Bollard

Funding:
- NCI Program Project Grant, NHLBI Somatic Cell Therapy Center, Lymphoma SPORE, Leukemia and Lymphoma Society Specialized Center of Research, Doris Duke Distinguished Clinical Scientist Award, PACT