Are Genomics and proteomics biomarkers ready for prime time?
Outline

1. Use of “omics” in patient diagnosis or stratification in cancer: examples in breast, and lymphoma
2. Use of “omics in the management of lung cancer
 • Non-invasive diagnosis of lung cancer
 • Prediction of response to therapy
3. Clinical trial designs
4. Conclusions
Publications and FDA approved Cancer Biomarkers

20 plasma cancer biomarkers, in 10 cancers, none in aero-digestive tract cancers

Ludwig and Weinstein

Vanderbilt-Ingram Cancer Center

Nature Reviews Cancer 5, 845-856, 2005
ER and Her2 in Breast Cancer

<table>
<thead>
<tr>
<th>ER (IHC)</th>
<th>Response to Tamoxifen</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>19%</td>
</tr>
<tr>
<td>-</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FISH Her2 (PathVision)</th>
<th>Response to Herceptin</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>19%</td>
</tr>
<tr>
<td>-</td>
<td>0%</td>
</tr>
</tbody>
</table>
Genomic signature in Breast Cancer

- **Oncotype DX™ from Genomic health in ER+ BC**
 - likelihood of disease recurrence
 - magnitude of chemotherapy response NN BC
 - Based on RT-PCR on 21 genes in FFPE tissue

- **MammaPrint® from Agendia**
 - 70 genes signature to predict survival
Prediction of Recurrence of Tamoxifen-Treated NN BC

RT-PCR 21 genes

Paik, NEJM 351, 2004
Prediction of survival in Burkitt’s Lymphoma

Gene signature distinguishes BL vs DLCL and best Rx for BL.

Affy
Top 100 genes
Outline

1. Use of “omics” in patient diagnosis or stratification in cancer: examples in breast, and lymphoma
2. Use of “omics in the management of lung cancer
 • 1. Non-invasive diagnosis of lung cancer
 • 2. Prediction of response to therapy
3. Clinical trial designs
4. Conclusions
Criteria for Diagnostic Biomarkers

1. Robust and reproducible
2. Of proven clinical value
 And trigger a clinical decision
3. Clinical community adopts its use and takes advantages of benefits it affords
4. Competitive in terms of cost and insurance reimbursement.
Lung cancer diagnostic biomarkers

<table>
<thead>
<tr>
<th>Candidates</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discovery, Prediction</td>
<td>Blinded studies</td>
<td>Retrolongitudinal</td>
<td>Prospective screening</td>
<td>Cancer Control</td>
</tr>
<tr>
<td>SERUM/PLASMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALDI TOF MS profiling</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELDI TOF MS profiling</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific antigens (Annexins)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific antigens (Luminex)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptidomics</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoantibodies</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA methylation Blood</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare cell detection</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUMOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA methylation</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA tumor profiling</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALDI MS profiling</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosome aberrations</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPUTUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Methylation Sputum</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA CN -FISH</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Management of lung cancer

Risk Assessment

Symptoms Screening Chemoprevention

Non invasive Diagnosis

FNA Bronchoscopy Surgical bx

Staging

CT chest/abn PETscan Mediastinoscopy

Treatment

Surgery Chemo Radiation

Response Recurrence Prognosis

SNPs

Serum proteomics
Autoantibodies

Genomic/
Proteomic sig

ERCC1
Gene signature

Serum proteomics
FISH
Gene signature
Non-invasive diagnosis

Surgical

- Clinical data
- Exhaled breath
- Sputum, **Serum**, Urine
- Chest CT
- Bronchoscopic specimen
- Transthoracic specimen
- Surgical specimen
Serum proteomic profiling

288 serum samples
142 cases and 146 controls

Training set
N=182
92 cases 90 controls

Matched Test set
N=106
50 cases 56 controls

Signature
7 features

Sensitivity 58.0%
Specificity 85.7%

Yildiz et al. JTO 2007
Genetic profiling predictive of lung cancer

- Expression profile from large airway epithelial cells may predict tumor development
- Tissue accessible (Br. Brush or buccal swab)
- Quantitative assay (RT-PCR)
- Association with cancer
- Assessment of drug related function
 - Response to therapy
 - Needs validation

Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer

a. n=52
b. n=35

Affy HG-U133A

Accuracy of classification
a: 83%
b: 80%
Prediction of response to Rx

Non-surgical

95-100% risk of progression

Non-surgical

Chemo

Predict response?
Overview

Training cohort
Italian A (70)
Japanese (69)

Algorithm Generation
(8 peaks -> good vs poor outcome)

Application of the algorithm

Test cohort
Italian B (67)
good / poor
TTP
OS

Control Test cohort: (61)
good / poor
TTP
OS

Test cohort
ECOG-Erlotinib (96)
good / poor
TTP
OS

Assessment of the prediction
Training cohort

Test cohort

Taguchi/Solomon et al, 2007 JNCI
ECOG 1594 cohort:

Advanced NSCLC, first line erlotinib

n = 58, stage IIIB and IV

Control test cohort

Advanced NSCLC received Chemotherapy excluding EGFR TKIs

(n = 61, stage IIIB or IV)

Taguchi/Solomon et al, 2007 JNCI
Outline

1. Use of “omics” in patient diagnosis or stratification in cancer: examples in breast, and lymphoma
2. Use of “omics in the management of lung cancer
 • Non-invasive diagnosis of lung cancer
 • Prediction of response to therapy
3. Clinical trial designs
4. Conclusions
Clinical utility of predictive marker
Study Design -1

Marker assessment \rightarrow Screen or Intervene “Marker +” only

Single arm validation study
Comparison to historical controls
Clinical utility of predictive marker
Study Design - 2

Randomization based on assessment of marker.

Proves that the predictive test improves pts outcome when compared with unselected use of same management.
Clinical utility of predictive marker

Study Design-2

ECOG 1507

IIIIB-IV NSCLC
First line

MALDI profile

Serum MALDI Good

Random

Erlotinib

Treat SOC

Serum MALDI Poor

Treat SOC
Clinical utility of predictive marker
Study Design -3

Randomization based on assessment of marker.
Proves that intervention A is better than intervention B in both Marker + and - groups.
1.1 cm suspicious nodule

Surgical candidate

Tissue diagnosis

PET CT scan

Surgery

Observation

Avoid futile thoracotomies

Avoid missed cures
Lung Cancer Biomarkers Group
NCI/SPORE/EDRN

<table>
<thead>
<tr>
<th></th>
<th>Set A</th>
<th>Set B</th>
<th>Set C</th>
<th>Set D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection</td>
<td>Prospectively collected</td>
<td>Prospective collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOP</td>
<td>No or not unique SOP</td>
<td>Unique SOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>2000-2005</td>
<td>2006-on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical setting</td>
<td>Diagnosis</td>
<td>Screening</td>
<td>Diagnosis</td>
<td>Screening</td>
</tr>
<tr>
<td>Cases</td>
<td>180</td>
<td>170</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>Controls</td>
<td>180</td>
<td>250</td>
<td>180</td>
<td>250</td>
</tr>
<tr>
<td>Other ca</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

Conclusions

• The complexity of the biology challenges our ability to measure the effectiveness of diagnostic strategies.

• Signatures as opposed to single biomarkers are likely to provide better biomarkers.

• Utility of diagnostic biomarkers need to be tested in the appropriate clinical context.

• MALDI-TOF MS is able to predict OS and TTP in 2 blinded test sets, treated with both gefitinib and erlotinib. Serum proteomic assay may assist in the pre-treatment selection of NSCLC patients who will show improved survival after treatment with EGFR TKIs.

• Large number of candidates needs to be evaluated across institutions and platforms and validated in existing serum/plasma repositories.
Acknowledgements

Laboratory
• Jamshed Rahman
• Rama Rajambabu
• Alison Miller
• Lynne Fenner
• Candace Murphy
• Harriet Davis

Pathology
• Adriana Gonzalez

Oncology
• David Carbone
• David Johnson
• Fumiko Taguchi
• Ben Salomon (UCHSC)
• Takefumi Kikuchi

Proteomics
• Lisa Zimmerman
• Erin Seeley
• Qinfeng Liu
• Richard Caprioli
• Dan Liebler

Biostatistics
• Yu Shyr
• Ming Li
• Shuo Chen
• William Gray