Drug-Device Combinations for Epilepsy

Martha J. Morrell MD
Chief Medical Officer, NeuroPace
Clinical Professor of Neurology,
Stanford University
M.I.: 32 year old woman

First generalized tonic clonic seizure (GTC) 5 years ago while studying for D.C. Bar

- 4 days later, admitted emergently with a series of GTCs
- Diagnosis: probable viral encephalitis

Now has seizure flurries every 3-4 weeks; prodrome of doom that often evolves to GTC; amnestic for seizures

- Trials of 8 different antiseizure medications without control
- Not epilepsy surgery candidate- seizure foci include essential memory areas

Memory and concentration poor

- Unemployed, depressed and withdrawn; suicidal thoughts
M. I.

Assessment:

- Medically intractable partial and secondarily generalized seizures which are life threatening
- Social and vocational disability
- Cognitive deficits and mood disturbance

Differential diagnosis:

- Brain injury from encephalitis
- Acute and chronic effects of multiple seizures
- Side effects from antiepileptic medications
- The loss of a normal life

What am I treating?
Seizures and Epilepsy

• Epilepsy: recurrent seizures caused by any of a number of brain conditions

• ~1 in 100 people have epilepsy

• May affect a small focal area of the brain (partial) or the entire brain (generalized)

• The area affected by the seizure loses its regular ability to function

• Comorbidities include missed educational and occupational opportunities, depression, anxiety, increased mortality

• Partial onset seizures are the most frequent type of uncontrolled epilepsy in adults
Despite new medications, ~30% of patients with partial onset seizures continue to have seizures.
Epilepsy Surgery

• ~ 15% of patients with intractable partial seizures are candidates for epilepsy surgery to remove or disconnect seizure focus

• Many are not candidates because of the risks of neurological deficits or the unlikelihood of a significant seizure reduction
Devices for Epilepsy: Open Loop Stimulation for Partial Onset Seizures

Vagus Nerve Stimulation (VNS)
- RCTs demonstrated safety and efficacy
- Scheduled stimulation of the vagus nerve
- Approved by FDA in 1997 as adjunctive therapy for partial epilepsy

Deep Brain Stimulation (DBS)
- RCT for safety and efficacy in partial seizures
- Scheduled stimulation of the anterior nucleus of the thalamus
- Investigational in U.S.; approved in > 30 countries outside U.S.
Sensing Devices

MIT Watch: GSR

SmartWatch: Movement Monitor

Medpage MP5 Bed Seizure Detection Alarm

Baby Monitor
Seizure Prediction and Alerting

Investigational; not approved by U.S. FDA
Brain Responsive Neurostimulation: the RNS System

• Closed loop neurostimulation system approved by FDA for treatment for medically refractory, partial onset seizures for patients ≥ 18 years old
• 44% reduction in seizures at 1 year, 66% at 5 years
• Stimulation provided in response to detection of electrocorticographic patterns identified by physician
 – Detections individualized to patient
 – Total stimulation time < 6 minutes/day
 – Therapeutic stimulation not perceived by patient
• Long-term ambulatory ECoG data:
 – Physician reviews epileptiform activity, electrographic seizures and response to treatment
Spectral Frequency and Electrocortico-graphic data displays: RNS System
Insights from Long-term Ambulatory Electrocorticographic (ECoG) Monitoring: the Power of Data

- Temporal patterns of seizures and epileptiform activity
- Biomarkers
- Individualized treatment
- Treatment synergies
Temporal Patterns in Brain Epileptiform Activity as Recorded by RNS System

Daily Cycles (Day by Hour)

Monthly Cycles (Month by Day)
Biomarkers: Correlation between Epileptiform Activity Recorded from the Brain and Clinical Seizures
Electrographic Effects of Antiepileptic Medications as Recorded from RNS System

Before Medication A

After Medication A

Detection of epileptiform abnormalities

Skarpaas et al., American Epilepsy Society, Dec 2013
Drug and Device Epilepsy Therapies

• Effective antiepileptic medications with different MOA are available
• Safe and effective neurostimulation devices are available
• MOA not known but clinical improvements acutely and over time suggest neuronal and network effects
• A responsive brain stimulation device is collecting clinical and long-term ambulatory ECoG data suitable for large scale data analytics
• Seizure alerting devices are proliferating as consumer products
Drug-Device Combinations: Opportunities

Electrophysiological or behavioral event triggers:
• Targeted *temporal* delivery of drug
 • Alert sent to patient to use rescue medication
• Targeted *spatial* delivery of drug
 • Drug delivered from reservoir or lead, or activated at site by stimulation

Drugs selected to facilitate device effects:
• With cardiac devices, drugs that act by membrane stabilizing or use-dependent ion blockade are avoided—should this be the same with epilepsy devices?
M. I.

- Treated with responsive stimulation at seizure foci in left and right temporal lobes
- Medications and stimulation settings adjusted based on clinical response and electrophysiological data
- Objective data indicates that increased epileptiform activity is correlated with increased suicidality
- Receiving multidisciplinary care from neurology, psychiatry and cognitive rehabilitation physicians
- Response being tracked over time
Our Opportunity

To go from this:

To this: