Innovation in New Drug Development: Economic Factors

Joseph A. DiMasi, Ph.D.
Director of Economic Analysis,
Tufts Center for the Study of Drug Development
Tufts University

Public Workshop on Ensuring Patient Access to Affordable Drug Therapies
National Academies of Sciences, Engineering, and Medicine
Washington, DC, December 13, 2016
Agenda

• Background results on economic factors associated with the incentives to develop new drugs (costs, risks, and time)

• Competitive development within pharmacologic classes

• New business models and emerging R&D strategies to deal with the growing challenges of new drug development
R&D Cost per Approved Drug
Out-of-Pocket and Capitalized Cost per Approved New Compound

<table>
<thead>
<tr>
<th>Pre-human</th>
<th>Clinical</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>965</td>
<td>1,395</td>
</tr>
<tr>
<td>1,098</td>
<td>1,460</td>
<td>2,558</td>
</tr>
</tbody>
</table>

Pre-approval, Post-approval and Total Lifecycle Cost per Approved New Compound

Out-of-Pocket

- Total: 1,861
- Pre-approval: 1,395
- Post-approval: 466

Capitalized

- Total: 2,870
- Pre-approval: 2,558
- Post-approval: 312

Growth in Capitalized R&D Costs per Approved New Compound

Sources: 1970s, Hansen (1979); 1980s, DiMasi et al. (1991); 1990s-early 2000s, DiMasi et al. (2003); 2000s-early 2010s, DiMasi et al. (2016)
Cost Drivers: Change in Capitalized Cost per Approved Compound by Factor (direct cash outlays)*

<table>
<thead>
<tr>
<th>Factor Category</th>
<th>Factor</th>
<th>Percentage Change in Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Outlays</td>
<td>Out-of-Pocket Clinical Phase Costs</td>
<td>82.5%</td>
</tr>
<tr>
<td></td>
<td>Pre-human/Clinical Cost Ratio</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td>Overall Out-of-Pocket Costs</td>
<td>85.5%</td>
</tr>
</tbody>
</table>

* Factor impact on current study cost relative to prior study cost ($1,044 million in 2013 dollars)

Cost Drivers: Change in Capitalized Cost per Approved Compound by Factor (development risk)

<table>
<thead>
<tr>
<th>Factor Category</th>
<th>Factor</th>
<th>Percentage Change in Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>Clinical Approval Success Rate with Prior Study Distribution of Failures</td>
<td>57.3%</td>
</tr>
<tr>
<td></td>
<td>Distribution of Failures with Prior Study Clinical Approval Success Rate</td>
<td>-6.0%</td>
</tr>
<tr>
<td></td>
<td>Overall Risk Profile: Clinical Approval Success Rate plus Distribution of Failures</td>
<td>47.3%</td>
</tr>
</tbody>
</table>

* Factor impact on current study cost relative to prior study cost ($1,044 million in 2013 dollars)

Cost Drivers: Change in Capitalized Cost per Approved Compound by Factor (time and cost of capital)*

<table>
<thead>
<tr>
<th>Factor Category</th>
<th>Factor</th>
<th>Percentage Change in Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Pre-human Phase</td>
<td>-4.9%</td>
</tr>
<tr>
<td></td>
<td>Clinical Phase</td>
<td>0.2%</td>
</tr>
<tr>
<td></td>
<td>Regulatory Review</td>
<td>-3.0%</td>
</tr>
<tr>
<td></td>
<td>Overall Development Timeline</td>
<td>-5.6%</td>
</tr>
<tr>
<td>Cost of Capital</td>
<td>Discount Rate</td>
<td>-3.1%</td>
</tr>
</tbody>
</table>

*Factor impact on current study cost relative to prior study cost ($1,044 million in 2013 dollars)

Some Conjectures and Evidence Underlying Growth in Clinical Costs

- Increased clinical trial complexity: more procedures per patient (additional data gathered)
- Patient recruitment and retention
- Life sciences sector inflation (cost of inputs used in development)
- Testing against comparator drugs to meet market (payer) demands for comparative effectiveness
- Higher failure rates and more indications pursued
- Increased regulatory burden for some classes of compounds
Procedures per Protocol

<table>
<thead>
<tr>
<th>Phase</th>
<th>Unique Procedures</th>
<th>Median Number (2005)</th>
<th>1999-2005 Annual Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unique Procedures</td>
<td>40</td>
<td>6.1%</td>
</tr>
<tr>
<td></td>
<td>Total Procedures*</td>
<td>217</td>
<td>9.5%</td>
</tr>
<tr>
<td>Phase II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unique Procedures</td>
<td>35</td>
<td>5.8%</td>
</tr>
<tr>
<td></td>
<td>Total Procedures</td>
<td>195</td>
<td>12.1%</td>
</tr>
<tr>
<td>Phase III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unique Procedures</td>
<td>33</td>
<td>5.5%</td>
</tr>
<tr>
<td></td>
<td>Total Procedures</td>
<td>132</td>
<td>6.1%</td>
</tr>
<tr>
<td>Phase IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unique Procedures</td>
<td>32</td>
<td>9.1%</td>
</tr>
<tr>
<td></td>
<td>Total Procedures</td>
<td>99</td>
<td>11.0%</td>
</tr>
</tbody>
</table>

* Defined as the number of unique procedures multiplied by their frequency during the duration of the study

Source: Getz et al., American Journal of Therapeutics 2008;15:450-457
Data Points Collected per Patient for a Typical Phase III Protocol

Number of Data Points

2002: 492,000
2012: 929,000

Source: Getz and Kaitin, Re-Engineering Clinical Trials 2015: ch 1; Medidata Solutions
Regulatory Change (Diabetes Drugs) and Impact on Drug Development Costs

- **Unexpected cardiovascular risks found for diabetes drug rosiglitazone (Avandia®)**

- **FDA issued guidance in Dec 2008** (*Guidance for Industry: Diabetes Mellitus – Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes*)

- **Number of randomized patients and patient-years increased more than 2.5 and 4.0 fold before and after guidance, respectively, for diabetes drugs approved 2005-2010** (*Viereck and Boudes, Contemporary Clinical Trials, 2011;32(3):324-332*)

- **Clinical costs (particularly for phase III) higher for diabetes drugs in cost sample**
Some Observations on the R&D Results

• Not the cost of developing a single drug and indication
 ➢ Links the costs of failures with the successes
 ➢ Includes R&D expenditures on all indications pursued (successful or not)
 ➢ Includes fixed costs (non-drug specific R&D, R&D management, cost of running an ongoing R&D organization, etc.) and CMC (chemistry, manufacturing and controls)

• It’s an estimate of industry cost per approved active ingredient for a specified period (in essence, total R&D expenditures divided by the number of approved NMEs and NBEs)

• Pricing paradox
 ➢ At a macro level, expected R&D costs, together with expected prices and non-R&D costs, jointly determine the incentive to invest in innovation
 ➢ At a micro level, individual prices not set according to R&D (sunk) costs
 ➢ Individual prices depend on perceived value to patients and payers, the competitive landscape, policies and practices of government and non-government payers
Development Within Pharmacologic Classes: Imitation or Racing?
A Fairly Common Viewpoint on Me-too Drug Development

“More often, me-too drugs are made by competing companies, who create their own versions of blockbuster drugs to cut into a market that has already proved both lucrative and expandable”

Marcia Angell, 2004, The Truth About the Drug Companies: How They Deceive Us and What to Do About It
Questions About “Me-Too” Drugs

- Perfect substitutes or product differentiation offering choice from diverse product profiles and varying individual responses?
- Is research duplicative, wasteful and after-the-fact (sequential development), or does the research mainly result from a multi-firm innovation race (parallel development) for clinical advances?
- What is the impact on pricing?
- How quickly does competition emerge?
- Is the first-in-class the best-in-class?
- When does the development of me-too drugs occur in relation to marketing of the first-in-class drug?
- Are me-too drugs less safe?
Share of Later-in-Class Drugs with Patent Filed or Development Phase Initiated Prior to First-in-Class Approval

First-in-class drugs approved from 2005 to 2011; later-in-class drugs approved from 2005 to 2015

Source: DiMasi and Chakravarthy, Clinical Pharmacology and Therapeutics 2016;100(6):754-760
Time from Patent Filed or Development Phase Initiated for Later-in-Class Drugs to First-in-Class Approval

First-in-class drugs approved from 2005 to 2011; later-in-class drugs approved from 2005 to 2015

Source: DiMasi and Chakravarthy, *Clinical Pharmacology and Therapeutics* 2016;100(6):754-760
Empirical Evidence on the Effects of M&A and Alliance Activity on Pharmaceutical Innovation

- Under-researched area

- Evidence mixed, but a number of studies suggest lower post-merger R&D spending, number of projects or patents, and productivity

- The studies, however, examine short-term impacts (two or three years post-merger) and outcomes are heterogeneous

- Some evidence that alliances and mergers can be complementary (i.e., alliances pre-merger can help predict which potential mergers will be successful)

- Some evidence that at an industry level, too much M&A activity can reduce industry innovation levels (fewer independent sources of innovation)
Summary

• New drug development is lengthy, risky, and costly

• R&D costs have continued to increase in an increasingly cost-conscious market

• Biopharmaceutical innovation is competitive, with development within pharmacologic classes occurring largely contemporaneously

• Biopharmaceutical firms have increasingly engaged in collaborative discovery and development to share risks and increase innovation
Tufts Center for the Study of Drug Development
Tufts University, Boston, Massachusetts, USA

Joseph A. DiMasi, Ph.D.
Director of Economic Analysis