Discussion of Research Recommendations:
Thiamin, Riboflavin, Niacin, Vitamin B6, Folate,
Vitamin B12, Pantothenic Acid, Biotin, and Choline

Dietary Reference Intake Research Synthesis Workshop

Issues
• New knowledge
• Common genetic variations influence DRIs
• Metabolomics and DRIs

Steven Zeisel Patrick Stover
Choline Folate
Thiamin B12
Riboflavin B6
Niacin Biotin
Pantothenic acid

DRI Report on Biotin AI = 30 μg/day for adults

New Discoveries
- Histones are modified by biotin
 - Accounts for its effects on gene expression
- Holocarboxylase synthetase (HCS) deficiency
 - Infantile neurological, developmental and metabolic abnormalities
 - Resolves with pharmacological doses of biotin
 - Results in reduced Histone biotinylation

Provide “useful” indicators for setting an EAR?
DRI Report on Vitamin B₆

EAR: 1.1 - 1.7 mg/day adults
UL: 100 mg/day adults

GAPS
- Indicators for requirement
- Research on genetic variation & chronic disease prevention
- EAR for children, elderly, pregnant and lactating women
- Interaction with other vitamins

New Discoveries
- Plasma B₆ levels fall in inflammation
 - B₆ vs. CRP and IL6 negatively correlated (Clin Chem. 2006 Vol 52)
 - Sickle Cell Disease – elevated Hcy
 - Rheumatoid arthritis (Arth. Res. & Therapy (2005) 7:R1254)
- Pyridoxine supplementation corrects deficiency but not inflammation (Arth. Res. & Therapy (2005) 7:R1404)

DRI Report on Folate

EAR: 320 - 520 µg (DFE)/day adults
UL: 1.0 mg/day adults

Gaps and New Discoveries
- Comprehensive risk/benefit resulting from fortification FA
 - NTDs, vascular disease, cancer, cognition, etc.
- Genetic variation
 - MTHFD1 and MTHFR for NTDs, plus others.
- Status indicator with cutoff point.
 - Homocysteine: Selnbub data.
- Bioavailability
- Interaction with B12 deficiency
- Role in differentiation & development
- Requirements vary by trimester in pregnancy
- Requirements for children, elderly, women of reproductive age.

Two-phase regression model for the association between Ln Homocysteine concentrations and serum folate levels.

NHANESIII

J. Selnbub, Tufts Univ

Gaps and New Discoveries:
- Comprehensive risk/benefit resulting from fortification FA
- NTDs, vascular disease, cancer, cognition, etc.
- Genetic variation
- MTHFD1 and MTHFR for NTDs, plus others.
- Homocysteine: Selhub data.
- Bioavailability
- Interaction with B12 deficiency
- Role in differentiation & development
- Requirements vary by trimester in pregnancy
- Requirements for children elderly, women of reproductive age.

Gaps and New Discoveries:
- Interactions with other B-vitamins & choline
- Both affect methylation status
- Analytical methodology
- Mass spectrometry
- Development of mouse models for NTD prevention
- ? Ongoing

New Discoveries:
- Current RDA for folate is adequate for young women for all three MTHFR genotypes. (J. Nutr. (2003) 133:1272)
 - 43 subjects, 7 week depletion, 7 week repletion
- Reduced natural killer cell cytotoxicity in women with plasma FA; 78% of fasting participants exhibited plasma FA (2.3 nmol/L).
DRI Report on Vitamin B₁₂

EAR = 2.0 – 2.4 μg/day adults

UL = none

Gaps:
- Role in vascular disease
- Impact of genetic variation
- Requirements for the elderly
- Effect of folate on progression of B₁₂ deficiency
- Methods to detect status (indicators) (elderly, vegans)
- Interactions with other vitamins
- Efficacy of B₁₂ fortification

New Discoveries
- New methodologies for status are in development
- TC 776C G SNP affects indicators of B₁₂ status (HoloTC II and Hcy) (Blood (2002) 100:718)
- Plasma Hcy and MMA as indicators are consistent with values required to maintain hematological status

Two-phase regression models for the association between Ln MMA and Ln homocysteine concentrations and serum B₁₂ levels. NHANESIII

"Perspectives"

- Disease/pathology Outcome(s)
- Genetic Variation and Requirements
- Fetal/Stem Cell Programming
One-Carbon Metabolism

THF mutations/SNPs affect genome stability and methylation capacity

Methylation - DNA, proteins (histones), lipids, etc.

THYMYLATE

AdoMet/AdoHcy

Methionine

Homocysteine

5-methylTHF

5-methylTHF

MTHFR

Benefit and Risks of MTHFR Polymorphism

In utero Risk

“T” allele (A222V)

- NTDs
- In humans, (not in mice)
- Spontaneous abortion
- Not in HW equilibrium

Adult Benefit

“T” allele

- Physician’s Health Study – Colon Cancer Risk

Perspectives

Disease/pathology Outcome(s)
- Will a nutrient intake level present opposing benefit/risk outcomes for different diseases?

1. Genetic Variation and Requirements
2. Fetal/Stem Cell Programming
Penetrance

The probability of expressing a phenotype from a given genotype at a given time

Prevalence

A measure of the proportion of persons in the population with a certain SNP at a given time

Diet and Genetic Variation

Polymorphism Impact Parameters

“Perspectives”

1. Genetic Variation and Requirements

 - Few SNPs will be sufficiently penetrant to warrant genotype-specific recommendations.
 - miscarriage or non-HWEquilibrium (TCII, MTHFR, MTHFD1)
 - the use of supplemental folate has been suggested to reduce rates of human spontaneous abortion. *(Reprod. Biol. Endocrin. (2004) 2:7)*
 - Penetrant SNP-SNP interactions will have low prevalence.

 Diet and Genetic Variation

 Polymorphism Impact Parameters

 Gene-gene interactions

 The probability of expressing a phenotype from a given genotype at a given time

 A measure of the proportion of persons in the population with a certain SNP at a given time
Interaction of cSHMT and MTHFR SNPs

- 5-methylTHF
- AdoHyc
- AdoMet
- Methylation: DNA, proteins (histones), lipids, etc.
- THYMIDYLATE TS
- 5-methylTHF sequestration
- cSHMT

Strain

<table>
<thead>
<tr>
<th>Strain</th>
<th>AdoHyc (pmoles/ug protein)</th>
<th>AdoMet (pmoles/ug protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balb/c</td>
<td>0.6 +/- .16</td>
<td>2.9 +/- .9</td>
</tr>
<tr>
<td>129</td>
<td>0.4 +/- .17</td>
<td>3.3 +/- .8</td>
</tr>
<tr>
<td>SHMT</td>
<td>3.4 +/- .30</td>
<td>2.1 +/- .8</td>
</tr>
</tbody>
</table>

Strain

<table>
<thead>
<tr>
<th>Strain</th>
<th>AdoHyc (pmoles/ug protein)</th>
<th>AdoMet (pmoles/ug protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balb/c</td>
<td>0.6 +/- .16</td>
<td>2.9 +/- .9</td>
</tr>
<tr>
<td>129</td>
<td>0.4 +/- .17</td>
<td>3.3 +/- .8</td>
</tr>
<tr>
<td>SHMT</td>
<td>3.4 +/- .30</td>
<td>2.1 +/- .8</td>
</tr>
</tbody>
</table>

A genetic interaction between MTHFR and cSHMT in CVD Risk

<table>
<thead>
<tr>
<th>Strain</th>
<th>MTHFR CT</th>
<th>MTHFR CT</th>
<th>MTHFR TT</th>
<th>cSHMT TT</th>
<th>cSHMT wild-type</th>
<th>cSHMT mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds ratio (95% CI)</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>3.6</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>P value for interaction</td>
<td>< .001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A common SNP (L474F) in cSHMT

- L474F
- Impaired SUMO and Ubiquitin Conjugation
- Impaired SAM-dependent methylation
- Impaired thymidylate synthesis

References

- Pat Cassano
1. Disease/pathology Outcome(s)

2. Genetic Variation and Requirements
 - Framework for establishing impact/cutoffs of genetic variation (prevalence & penetrance) for subgroup recommendations.

3. Fetal/Stem Cell Programming

Fetal Origins of Adult Disease or “Barker” Hypothesis (1986)

Fetal environmental exposures, especially nutrition, act in early life to program risk for adult health outcomes.

Early Nutrition Experiences → **Risk Phenotype** → **CVD**
- obesity
- hypertension
- insulin resistance
- diabetes
- metabolic syndrome

“Program” “Imprint”

Sense → Adapt → Irreversible programming

Can folate (program) gene expression?

A agr/v/a mice

- IAP insertion leads to constitutive, ectopic agouti expression (yellow mouse)
- Methylation of the IAP element leads to less agouti expression (pseudoagouti coat color)
- Maternal folate & choline supplementation during gestation leads to increased embryonic IAP methylation and the pseudoagouti phenotype
- Rescue of SA?
cSHMT Deletion Induces:
- NTDs
- Programming of thymidylate synthesis

- Only cSHMT +/− exhibit NTDs
- cSHMT −/− display elevated TS
- TS Programming

B-vitamin Requirements
- Genetic Variation (EAR and UL)
- Epigenetic effects/critical windows (UL)
- (EAR, UL and new indicators)

Risk of inadequacy
Risk of excess

Increased intake

Inadequate intake