Developmental programming – therapies to reverse metabolic disturbances

Associate Professor Mark Vickers, Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, New Zealand.
Introduction

- well-established that alterations in the early life environment increase risk for obesity and metabolic and cardiovascular disorders in offspring

- not a single cause but complex multifactorial process

- while the underlying mechanisms are being elucidated, little is known about interventions early in life to diminish the incidence and severity of later disease

- Most evidence to date is derived from experimental models with limited translation
What interventions?

- **Dietary**
 - lipids, pre-/probiotics, taurine, vitamins, polyphenols, methyl donors etc...

- **Pharmacologic**
 - Leptin, growth hormone, melatonin, GLP-1 analogs, nuclear receptor agonists etc...

- **Behavioral/lifestyle**
 - Exercise, counselling etc...

When to intervene?

- Pre-conception, pregnancy, lactation, early infancy/childhood
The importance of the early life period

Life course view of NCD

- The earlier the intervention the bigger the effect on later risk reduction

From Godfrey *et al.*, TEM, 2010
Critical windows of opportunity?

Developmental Plasticity

Genotype

Environment

Adult Phenotype

Environment
Maternal nutrition – a “U”-shaped curved

Grattan D R Endocrinology 2008;149:5345-5347
Interventions in programming:
Evidence from pre-clinical models
Pre-clinical models of early life nutritional manipulation

- Control
- Undernutrition
- Supplements e.g. Folic acid
- High fat
- High salt
- Low protein
- High sugar

Control Supplements e.g. Folic acid Low protein High fat High salt Low protein High sugar
Pre-clinical models of early life nutritional manipulation

- Undernutrition
- Low protein
- High fat
- High salt
- Low protein
- High sugar

- Obesity
- Type 2 Diabetes
- Heart Disease
- Altered appetite
- Inflammation
- Reproductive Disorders
Diet Counselling
Role of Leptin

- Neonatal leptin treatment of *ob/ob* mice rescues neural projection pathways from the hypothalamus.
- *Post-weaning* treatment has no effect.

Leptin as an intervention?

Neonatal Leptin Treatment Reverses Developmental Programming

- The effects appeared permanent and were specific to offspring of maternally undernourished offspring
 - has been repeated in numerous other models/species including effects on hypothalamic neuropeptides
 - Of note, leptin is present in breast milk but is not in infant formula
- we know that the effects of neonatal leptin treatment are **dependent upon prior maternal nutritional status and gender**

- leptin treatment to male neonates of normal pregnancies can elicit an adverse metabolic phenotype in later life

Maternal diet and leptin treatment interactions in offspring

- changes in PPAR-α and 11β-HSD2 methylation status is directionally dependent upon prior maternal nutritional status

Gluckman et al., PNAS, 2007
Maternal Leptin Treatment

- placental 11β-HSD2 activity is reduced by a low-protein diet; this reduction is prevented by maternal leptin treatment
- Offspring partially protected against HF-diet induced weight gain
- in this study, leptin was not given to control mothers

* p<0.05 normal protein saline versus low protein saline

Stocker et al.
Neonatal Exendin 4

- Exendin 4 (GLP-1 analog)
- normalisation of β-cell mass and proliferation
- reverses epigenetic modifications to pancreatic and duodenal homeobox 1 (Pdx1)

Stoffers et al, Diabetes, 52: 737
Maternal Taurine Supplementation

- Taurine concentrations are low in diabetic and pre-diabetic states
- physiological plasma taurine levels are important for adequate β-cell function and insulin action
- Taurine has protective effects in the setting of maternal hepatic cholestasis
- Confers long term beneficial effects in offspring
Maternal Taurine Supplementation

Fructose-fed mothers

- fructose supplemented mothers are hyperinsulinemic compared to control mothers with increases in inflammatory markers
- these effects are normalised with maternal taurine supplementation

Maternal Taurine Supplementation

Offspring at birth

- maternal obesity results in increases in markers of inflammation in offspring at birth
- effects are reversed with maternal taurine supplementation

Neonatal GH treatment and adipocyte size in adulthood

- Offspring of undernourished mothers display adipocyte hypertrophy in adult life.
- Adipocyte size is normalised in UN offspring treated with GH as neonates.

Neonatal GH treatment normalises blood pressure and fat mass in adult life

- Neonatal GH Tx, adults measured at postnatal day 150
- Associated with changes in specific miRNA family (LET-7)
 - Although GH itself is unlikely as a treatment, GH can be modified by diet, exercise, sleep etc

Maternal lipid supplementation

Conjugated linoleic acid (c9, t11-CLA)

Offspring at weaning

- Offspring from HF mothers had significantly impaired insulin sensitivity and increased gut inflammatory markers, which were reversed in offspring of HFCLA mothers
- Also improved maternal insulin sensitivity

\[n = 6 \text{ litters/group} ; * \text{HF vs. CON; # HF vs CLA; } + \text{ HF vs HFCLA} \]
Postnatal dietary omega-3 fatty acids prevents programming-induced hyperleptinemia and hypertension at 6 months of age.

*p<0.05 vs all groups, # p<0.05 versus chow
Wyroll et al., Endocrinology 2005
Maternal Vitamin D status

- role in controlling placental inflammation and insulin sensitivity

- pre-pregnancy obesity predicts poor vitamin D status in mothers and their neonates

- Vitamin D deficiency in pregnancy can result in insulin resistance, altered inflammatory profiles and increased risk of early postnatal obesity in offspring\(^1,2\)

- impact of supplements on outcomes related to adiposity are conflicting

\(^1\)Morales E, Int J. Obesity, 2015, \(^2\)Zhang H, Diabetologia, 2014
Dietary methyl donors

Folic acid1

Glycine2

Choline3

Mixed supplements4

Maternal supplementation improves metabolic and cardiovascular outcomes in offspring following both undernutrition and maternal obesity

Maternal Choline Supplementation

- Maternal choline supplementation reduces low-protein induced elevations in systolic blood pressure and fat mass in adult offspring

Exercise/Lifestyle Interventions

- Physical activity has the potential to mitigate against the increased obesity observed in “programmed” offspring during two critical windows:
 - **maternal exercise prior to and during pregnancy**
 - **exercise during childhood for those at risk of “programmed” obesity**

- Recent early feeding practices intervention study reported no change in prevalence of overweight/obesity

Exercise as an intervention

- Early exercise can reduce adiposity in experimental models of both maternal undernutrition and maternal obesity\(^1,2\)
- Effects mediated in part by improved central leptin sensitivity\(^3\)
- Dependent on type and duration - moderate exercise in normal pregnancy can lead to a significant decrease in birth weight\(^4\)

\(^1\)Miles JL, Endocrinology 2008, \(^2\)Santos M, Am J Phys. 2015
\(^3\)Sun B, Am J Physiol. 2013, \(^4\)Hopkins S, JCEM, 2010
Dietary intervention in obese mothers prior to pregnancy

- dietary intervention in obese mothers reversed metabolic programming in offspring

- effects persisted into adult life but were sex specific

Zambrano et al, J Physiol, 2010
Vega et al, In J Obes., 2013
Catch-up growth

Preventing catch-up growth prevents programmed postnatal obesity?

Howie & Vickers, Br J Nutrition 2012

Low birth weight followed by rapid postnatal weight gain is associated with long-term risks for central obesity and insulin resistance.
Maternal Obesity and Omega-3/DHA

• as an anti-inflammatory - obesity and pregnancy are low-grade inflammatory states that increase the risk of fetal adiposity in the short term and metabolic syndrome in the long term

• maternal-fetal PUFA status is associated with lower infant adiposity - offspring born to mothers with recommended quantity of DHA during pregnancy are 30% less likely to have excessive body fat

• DHA supplementation in women with overweight/obesity results in infants with lower adiposity at birth (Donahue, 2011)

• DHA supplements in last half of pregnancy led to greater gestation length and increased infant size (Carlson et al, Am J Clin Nutr. 2013)

• differences across reported studies may simply relate to doses, sources and potential oxidation of n-3 PUFAs
Pre-/Probiotics

- administration of certain probiotics and/or prebiotics during the perinatal and postnatal period may be a potential prophylactic therapy for obesity and metabolic disease

- early gut microbiota modulation with probiotics may modify the growth pattern of the child by restraining excessive weight gain during the first years of life

- supplementation of infant formula with prebiotic oligosaccharides to compensate for the lack of some of the complex molecules naturally present in human milk?

Thum et al., J Nutr., 2012, 142(11)
Luoto et al., Int J. Obesity, 2010, 34(10)
• potential that interventions in setting of “intact” systems may lead to adverse outcomes

• how best to identify those “at risk” of programmed disorders? – tailored approach, metabolic markers

• sex-specific effects *e.g. maternal methyl-deficient diets can result in metabolic disturbances in male, but not female, rat offspring*
Who and when to target for intervention?

- Predictive biomarkers –
 - Importance of large biobanks
 - E.g. cord blood methylation of RXR-α and later childhood adiposity
 - Predominantly associative

- Biomarkers in populations often have a wide range and within this range, individuals can behave quite differently

- What are the trade-offs? i.e. epimutations that are likely associated with later negative health outcomes
e.g. maternal methyl donor supplementation can lead to a reduction in fatty liver but increased adipose tissue storage in offspring when later exposed to a HF diet
Transgenerational Effects

The effects of a single environmental exposure can be transmitted transgenerationally. An adverse maternal environment (F_0) effects not only the development of the fetus (F_1) but can also affect the germ cells which form the F_2 generation.
What about the father?

- growing evidence re paternal transmission of disease risk
- obesity increases sperm DNA damage
- Can be partially restored via diet/exercise interventions in obese fathers preconception, which improves aspects of sperm DNA integrity

(McPherson, Ann Nutr Metab, 2014)

Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring

Ng et al, Nature, 2010, 467(7318)
Discussion

- the early life period of developmental plasticity offers the most effective avenue for intervention

- although reversal has been shown in a number of experimental models (maternal and neonatal), direct translation to the clinic may prove difficult but will inform on possible intervention strategies

"I'm afraid you're suffering from an increased IL-1β and an aberrant miR843 expression"
Acknowledgements

Deborah Sloboda
Peter Gluckman
Bernhard Breier
Clare Reynolds
Clint Gray
Minglan Li
Angelica Bernal
Rachna Patel
Claudia Harrison

Friends of the Liggins Trust

Kelliher Trust

Marsden Fund

The Maurice & Phyllis Paykel Trust

The Children’s Hospital of Philadelphia

University of Southern California

The University of Queensland

University of Melbourne

University of Otago

University of Cambridge

Te Tari Taiuhenua

National University of Singapore

The Department of Internal Affairs

Te Pūtea Rangahau a Marsden

Gravida

National Centre for Growth and Development

The University of Auckland New Zealand

THE UNIVERSITY OF AUCKLAND

Te Whare Wānanga o Ōtāgo

Te Whare Wānanga o Tāmaki Makaurau
GH and IGFBP2

- Changes in IGFBP2 expression may be a mechanism used by adipocytes to limit further fat gain

Pre-weaning GH treatment normalises the inflammasome in adult offspring

Adipose tissue

C = controls, S = saline, UN = maternal undernutrition, GH = GH treatment

- Although GH itself is unlikely as a treatment, GH can be modified by diet, exercise, sleep etc

* versus all other groups

The Vicious Cycle

Maternal Obesity

Altered fetal/neonatal nutrition

Adult Obesity
Metabolic Syndrome
Type 2 diabetes

Childhood Obesity

Diet, physical activity

Resistance

Diet, physical activity
Maternal lipid supplementation
Conjugated linoleic acid (c9, t11-CLA)

Maternal Effects

- Mothers consuming the HF diet had significantly impaired insulin sensitivity, which was normalised in HFCLA mothers

*HF vs CON; +HFCLA vs HF, n=6 litters/group
Sex-specific Effects

Male placenta

IL-1β (Fold induction)

<table>
<thead>
<tr>
<th>Control</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

TNFα (Fold induction)

<table>
<thead>
<tr>
<th>Control</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

CD68 (Fold induction)

<table>
<thead>
<tr>
<th>Control</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Female placenta

IL-1β (Fold induction)

<table>
<thead>
<tr>
<th>Control</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

TNFα (Fold induction)

<table>
<thead>
<tr>
<th>Control</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

CD68 (Fold induction)

<table>
<thead>
<tr>
<th>Control</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

(Gray, Reynolds et al, Biol. Reprod., 2015)