Fundamentals of Epigenetics

Rob Waterland, PhD
Acknowledgements

Waterland Lab
Eleonora Laritsky, MS
Maria Baker, PhD
Tihomira Petkova, PhD
Jesse Eclarinal
Caroline Zhu
Noah Kessler
Former:
Ge Li, PhD
John Kohorst, MD

Collaborators
Lanlan Shen, MD, PhD
Yongtao (Grant) Guan, PhD
Cristian Coarfa, PhD
Andrew Prentice, PhD
Branwen Hennig, PhD
Matt Silver, PhD
Richard Simerly, PhD

Funding
USDA, NIH-NIDDK, UK-MRC
Epigenetic Epidemiology of the Developmental Origins Hypothesis
Robert A. Waterland and Karin B. Michels
2007 Ann Rev Nutr

Epigenetic Mechanisms Affecting Regulation of Energy Balance: Many Questions, Few Answers
Robert A. Waterland
2014 Ann Rev Nutr
Where Health Begins

Obesity, Cancer and Heart Attacks: How Your Odds Are Set in the Womb
Metabolic Imprinting: Adaptive responses to early nutrition

- Susceptibility limited to critical period of development
- Persistent effect lasting through adulthood
- Specific and measurable outcome
- Quantitative relationship between exposure and outcome
Metabolic Imprinting - Potential Mechanisms

• Alterations in organ structure
• Alterations in cell number or ploidy
• Clonal selection
• Epigenetics (metabolic differentiation)

Waterland & Garza 1999 *Am J Clin Nutr*
EPIGENETICS: Mitotically heritable, stable alterations in gene expression *potential* that are NOT caused by changes in DNA sequence

Epigenetics: “Above” genetics
Epigenetic Mechanisms

• Cytosine Methylation

• Histone Modifications?
 - Henikoff & Shilatifard 2011 *Trends in Genetics*

• Autoregulatory Transcription Factors
 - Riggs & Porter 1996 in *Epigenetic mechanisms of gene regulation*

• Non-coding RNA

Waterland & Michels 2007 Ann Rev Nutr
Why Focus on DNA Methylation?

- Most stable epigenetic mark
- Known mechanism of mitotic heritability
- Can be measured in minute quantities of DNA
- Can be measured molecule-specifically
 - Enables precise assessment of allelic regulation
Establishment and Maintenance of DNA Methylation

- Most cytosines within CpG dinucleotides are methylated

![Chemical structure of Cytosine and 5-Methylcytosine]

- Tissue-specific patterns of CpG methylation are established during development

- Methylation requires dietary methyl donors and cofactors

- Mitotically heritable

Waterland & Michels 2007 *Ann Rev Nutr*
Is epigenetic dysregulation contributing to the obesity epidemic?
Epigenetic Dysregulation Causes Obesity

Cloning

Prader-Willi Syndrome

- Infantile hypotonia
- Gonadal hypoplasia
- Feeding difficulties
- Hyperphagia
- Obesity
- Moderate MR
- Behavioral problems
- Short stature
- Small hands and feet

Tamashiro KL et al, Nat Med 2002
The Agouti Sisters
The Agouti Sisters
Obstacles to Understanding Epigenetic Contribution to Human Obesity

• Genetic variation influences epigenetic variation

• Epigenetic regulation is largely cell type-specific

• Epigenetic regulatory regions poorly characterized

• Disease process can affect epigenetic mechanisms
 - Causation vs. association

Waterland 2014 Ann Rev Nutr
Waterland & Michels 2007 Ann Rev Nutr
Tissue-specific Enhancer Activity in the Human Genome

Kundaje et al 2015 Nature
Obstacles to Understanding Epigenetic Contribution to Human Obesity

• Genetic variation influences epigenetic variation

• Epigenetic regulation is largely cell type-specific

• Epigenetic regulatory regions poorly characterized

• Disease process can affect epigenetic mechanisms
 - Causation vs. association
Developmentally Programmed 3’ CpG Island Methylation Confers Tissue- and Cell-Type-Specific Transcriptional Activation

Da-Hai Yu, Carol Ware, Robert A. Waterland, Jiexin Zhang, Miao-Hsueh Chen, Manasi Gadhkari, Govindarajan Kunde-Ramamoorthy, Lagina M. Nosavanh, Lanlan Shen

Yu et al 2013 Mol Cell Biol
Obstacles to Understanding Epigenetic Contribution to Human Obesity

- Genetic variation influences epigenetic variation
- Epigenetic regulation is largely cell type-specific
- Epigenetic regulatory regions poorly characterized
- Disease process can affect epigenetic mechanisms
 - Causation vs. association
Interpretation and Significance: The Way Forward

- Controlled studies in animal models are urgently needed to understand developmental programming of energy balance

- Considerations for design of human studies
 - Assess epigenetic variation in context of genetic variation
 - Study appropriate tissues (or confirm systemic variation – Metastable epialleles)
 - Focus on genomic regions of functional interindividual variation
 - Perform prospective studies to enable causal inference

Waterland 2014 Ann Rev Nutr
Waterland & Michels 2007 Ann Rev Nutr
Genetically Identical, Epigenetically Different