PREBIOTIC MECHANISMS OF ACTION

Seema Hooda, Kelly S. Swanson, George C. Fahey, Jr.
Department of Animal Sciences
Division of Nutritional Sciences

University of Illinois at Urbana-Champaign

Institute of Medicine Workshop on the Human Microbiome, Diet, and Health
February 23, 2012
Ingredients/novel compounds being examined for activities other than providing nutrients
- Health promotion
- Disease reduction

Area of study of great practical importance to the food and feed industries, and to suppliers to these industries

Non-digestible oligosaccharides (NDOs)
- Nutritional attributes:
 - Low caloric value, enhance mineral absorption
- Health related attributes:
 - May lower risk of infections and diarrhea; may modulate immune system; microbiota modulation (prebiotic activity)
Many NDOs have ability to alter the composition of the colonic microbiota in a positive manner:
- ↑ bifidobacteria and lactobacilli populations
- ↓ pathogenic populations

Concept of prebiotics:
- Introduced in 1995 (Gibson and Roberfroid)
- Attracted much academic and private sector attention
 - Positive effects on health outcomes
BACKGROUND

Definition of a prebiotic

1. Resistant to gastric acidity, to enzymatic hydrolysis, and to gastrointestinal absorption (i.e., not hydrolytically digestible)

2. Fermented by cecal/colonic microflora

3. Selectively stimulates growth and/or activity of those bacteria that contribute to colonic and host health

Gibson et al., 2004
What are the major dietary sources of prebiotics?
PREBIOTICS

- Well established
 - Fructans
 - Chicory root extract
 - Inulin
 - Oligofructose
 - Short-chain fructooligosaccharides (DP 3-5)
 - Galactooligosaccharides
 - Lactulose
POTENTIAL PREBIOTIC CANDIDATES

- Soybean oligosaccharides
- Glucoooligosaccharides
- Cyclodextrins
- Gentioooligosaccharides
- Oligodextrans
- Glucuronic acid
- Pectic oligosaccharides
- Isomaltoooligosaccharides
- Lactosucrose
- Xyloooligosaccharides
- Human milk oligosaccharides
- Mannanooligosaccharides (Yeast cell wall)
- Lactose
- Resistant starch and derivatives
- Oligosaccharides from melobiose
- N-Acetylchitooligosaccharides
- Polydextrose
- Sugar alcohols
- Konjac glucomannan
<table>
<thead>
<tr>
<th>POTENTIAL PREBIOTIC CANDIDATES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean oligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Glucooligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Cyclodextrins</td>
<td></td>
</tr>
<tr>
<td>Gentiooligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Oligodextrans</td>
<td></td>
</tr>
<tr>
<td>Glucuronic acid</td>
<td></td>
</tr>
<tr>
<td>Pectic oligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Pectic oligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Lactosucrose</td>
<td></td>
</tr>
<tr>
<td>Xylooligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Human milk oligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Mannanoligosaccharides</td>
<td></td>
</tr>
<tr>
<td>(Yeast cell wall)</td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td></td>
</tr>
<tr>
<td>Resistant starch and derivatives</td>
<td></td>
</tr>
<tr>
<td>Oligosaccharides from melobiose</td>
<td></td>
</tr>
<tr>
<td>N-Acetylchitooligosaccharides</td>
<td></td>
</tr>
<tr>
<td>Polydextrose</td>
<td></td>
</tr>
<tr>
<td>Sugar alcohols</td>
<td></td>
</tr>
<tr>
<td>Konjac glucomannan</td>
<td></td>
</tr>
</tbody>
</table>
POTENTIAL PREBIOTIC CANDIDATES

- Soybean oligosaccharides
- Glucooligosaccharides
- Cyclodextrins
- Gentiooligosaccharides
- Oligodextrins
- Glucuronic acid
- Pectic oligosaccharides
- Isomaltooligosaccharides
- Lactosucrose
- Xylooligosaccharides
- Human milk oligosaccharides
- Mannanoligosaccharides (Yeast cell wall)
- Lactose
- Resistant starch and derivatives
- Oligosaccharides from melobiose
- N-Acetylchitooligosaccharides
- Polydextrose
- Sugar alcohols
- Konjac glucomannan
WHY CATEGORIZED AS “POTENTIAL” PREBIOTIC CANDIDATES?

- Do not meet all of the specifications of definition to date
 - Selective stimulation of bacterial growth may be limited
 - Research is not yet complete
Adapted from Mussatto and Mancilha, 2007.
How do prebiotics modify composition of the gut microbiota?
PREBIOTICS

- Depending on type and dietary concentration provided, potential effects on:
 - Gastric emptying
 - Intestinal transit rate
 - Nutrient digestibility
 - Fecal bulking/frequency of defecation
 - SCFA production
 - Intestinal morphology
 - Gut immune modulation
 - GI microbiota
IMPACT OF GalOS ON THE INTESTINAL MICROBIOTA OF HEALTHY ADULTS

- 18 healthy human volunteers (19-50 years old)
- Study conducted over a 16 week period

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Testing</th>
<th>Washout</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td>3 weeks/treatment</td>
<td>2 weeks</td>
</tr>
</tbody>
</table>

- Treatments – chocolate-flavored chewable candies containing 0.0, 2.5, 5.0, or 10.0 g GalOS/d
- Fresh fecal samples collected within 1 h of defecation

Davis et al., 2010
Enumeration Through Culturing

Log 10 CFU/g feces (Mean ± SD)

<table>
<thead>
<tr>
<th>Bacterial group</th>
<th>Baseline</th>
<th>0.0 g</th>
<th>2.5 g</th>
<th>5.0 g</th>
<th>10.0 g</th>
<th>Washout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose-fermenting enterobacteria</td>
<td>5.60</td>
<td>5.68</td>
<td>5.64</td>
<td>5.18</td>
<td>5.59</td>
<td>5.78</td>
</tr>
<tr>
<td>Enterococci</td>
<td>5.02</td>
<td>5.02</td>
<td>4.95</td>
<td>4.67</td>
<td>4.70</td>
<td>5.13</td>
</tr>
<tr>
<td>Total anaerobes</td>
<td>10.19</td>
<td>10.19</td>
<td>10.11</td>
<td>10.24</td>
<td>10.35*§</td>
<td>10.19</td>
</tr>
</tbody>
</table>

Significantly different vs 0.0 g: * (p < 0.05).
Significantly different vs 2.5 g: § (p < 0.05).
BIFIDOGENIC EFFECT OF GalOS AS DETERMINED BY qRT-PCR

For all 18 subjects

Dosage of GalOS

Davis et al., 2010

For the 9 responders

Dosage of GalOS
IMPACT OF GalOS ON THE INTESTINAL MICROBIOTA

- 18 healthy human volunteers (19-50 years old)
- Study conducted over a 16 week period

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Testing</th>
<th>Washout</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
<td>3 weeks/treatment</td>
<td>2 weeks</td>
</tr>
</tbody>
</table>

- Treatments – chocolate-flavored chewable candies containing 0.0, 2.5, 5.0, or 10.0 g GalOS/d
- Pyrosequencing of V1-V3 region of 16S rDNA

Davis et al., 2011
RESULTS

- Consumption of GalOS did not alter bacterial diversity of fecal microbes

- Predominant phyla
 - Firmicutes 64%
 - Bacteroidetes 28%
 - Actinobacteria 3%
 - Verrucomicrobia 1%
 - Proteobacteria 1%
RESULTS

- **Predominant families**
 - Lachnospiraceae 31%
 - Ruminococcaceae 18%
 - Bacteroidaceae 12%
 - Bifidobacteriaceae 2%

- **Most common genera**
 - Bacteroides 12.2%
 - Faecalibacterium 7.7%
 - Blautia 7.4%
 - Ruminococcus 3.7%
 - Roseburia 2.2%
 - Bifidobacterium 1.5%
Proportion of Bacterial Taxa Affected by GalOS Consumption

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>10.0 g§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinobacteria (Phyla)</td>
<td>2.52</td>
<td>7.19</td>
</tr>
<tr>
<td>Bifidobacteriaceae (Family)</td>
<td>1.56</td>
<td>6.14*</td>
</tr>
<tr>
<td>Bifidobacterium (Genus)</td>
<td>1.28</td>
<td>5.20*</td>
</tr>
<tr>
<td>B. adolescentis</td>
<td>0.37</td>
<td>1.03</td>
</tr>
<tr>
<td>Bifidobacterium spp I</td>
<td>0.15</td>
<td>0.77*</td>
</tr>
<tr>
<td>Bifidobacterium spp II</td>
<td>0.46</td>
<td>2.00*</td>
</tr>
<tr>
<td>Bifidobacterium spp III</td>
<td>0.62</td>
<td>2.50*</td>
</tr>
<tr>
<td>B. longum</td>
<td>0.09</td>
<td>0.33</td>
</tr>
<tr>
<td>B. catenulatum</td>
<td>0.15</td>
<td>0.91</td>
</tr>
</tbody>
</table>

* Significantly different from 2.5 g GalOS treatment (P < 0.05).
§ Significantly different from 0 g GalOS treatment (P < 0.05).

Davis et al., 2011
Responses vary among individuals
EFFECT OF RESISTANT STARCH ON THE COMPOSITION OF FECAL MICROBIOTA

- 10 healthy human volunteers (23-38 years old)
- Three types of crackers (33 g of RS per 100 g of crackers) containing:
 - RS2 (Hi-Maize 260)
 - RS4 (Fibersym® RW)-chemically modified phosphorylated cross-linked type 4 RS from wheat starch
 - Native wheat starch
- Subjects consumed 33 g of RS per day
- Double-blind, crossover study

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Treatment 1</td>
<td>Washout</td>
<td>Treatment 2</td>
<td>Washout</td>
<td>Treatment 3</td>
<td>Washout</td>
<td></td>
</tr>
</tbody>
</table>

Martinez et al., 2010
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Baseline</th>
<th>Control</th>
<th>RS2</th>
<th>RS4</th>
<th>Washout</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmicutes</td>
<td>78.2</td>
<td>79.6</td>
<td>75.9</td>
<td>65.6</td>
<td>78.1</td>
<td>0.0010</td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>12.7</td>
<td>10.4</td>
<td>10.1</td>
<td>16.3</td>
<td>12.2</td>
<td>0.0028</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>3.1</td>
<td>4.1</td>
<td>6.1</td>
<td>11.4</td>
<td>4.1</td>
<td>0.0334</td>
</tr>
</tbody>
</table>

Numbers in red represent proportions that were significantly higher than numbers in blue.
PROPORTION OF BACTERIAL FAMILIES

<table>
<thead>
<tr>
<th>Family</th>
<th>Baseline</th>
<th>Control</th>
<th>RS2</th>
<th>RS4</th>
<th>Washout</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifidobacteriaceae</td>
<td>2.1</td>
<td>3.0</td>
<td>5.8</td>
<td>11.1</td>
<td>2.8</td>
<td>0.0262</td>
</tr>
<tr>
<td>Porphyromonadaceae</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>3.4</td>
<td>0.5</td>
<td>0.0002</td>
</tr>
<tr>
<td>Ruminococcaceae</td>
<td>19.3</td>
<td>23.2</td>
<td>24.8</td>
<td>16.7</td>
<td>20.7</td>
<td>0.0031</td>
</tr>
<tr>
<td>Erysipelotrichaceae</td>
<td>4.7</td>
<td>3.9</td>
<td>3.1</td>
<td>2.6</td>
<td>3.9</td>
<td>0.0279</td>
</tr>
</tbody>
</table>
Proportion of Bacterial Genera

<table>
<thead>
<tr>
<th>Genus</th>
<th>Baseline</th>
<th>Control</th>
<th>RS2</th>
<th>RS4</th>
<th>Washout</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faecalibacterium</td>
<td>8.4</td>
<td>10.8</td>
<td>9.7</td>
<td>7.8</td>
<td>8.8</td>
<td>0.0336</td>
</tr>
<tr>
<td>Parabacteroides</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
<td>3.4</td>
<td>0.5</td>
<td>0.0002</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>1.5</td>
<td>2.2</td>
<td>4.5</td>
<td>8.9</td>
<td>2.1</td>
<td>0.0342</td>
</tr>
<tr>
<td>Dorea</td>
<td>2.9</td>
<td>3.0</td>
<td>1.7</td>
<td>1.6</td>
<td>2.7</td>
<td>0.003</td>
</tr>
</tbody>
</table>
NOVEL FIBER STUDY

- 20 healthy men (21-28 years)
- Randomized, double-blind, placebo-controlled crossover study
- Three study periods - 21 d
 - 16 d adaptation followed by 5 d of total fecal collections
- Treatments included- 3 fiber bars per day (7 g fiber/bar)
 - No supplemental fiber (NFC)
 - Polydextrose (PDX)
 - Soluble corn fiber (SCF)

Hooda et al., 2012
PROPORTION OF BACTERIAL GENERA

<table>
<thead>
<tr>
<th>Genus</th>
<th>NFC</th>
<th>PDX</th>
<th>SCF</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faecalibacterium</td>
<td>20.7(^a)</td>
<td>24.1(^b)</td>
<td>25.5(^b)</td>
<td>0.0022</td>
</tr>
<tr>
<td>Phascolarctobacterium</td>
<td>1.5(^a)</td>
<td>2.3(^b)</td>
<td>2.8(^b)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Dialister</td>
<td>1.0(^a)</td>
<td>2.35(^b)</td>
<td>2.87(^b)</td>
<td>0.0007</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>0.3(^a)</td>
<td>0.3(^a)</td>
<td>0.5(^b)</td>
<td>0.0241</td>
</tr>
</tbody>
</table>
Are prebiotics effective in achieving host health benefits?
HEALTH BENEFITS

- Healthy individuals
- Changes in composition of microbes
 - Increase in beneficial microbes
 - Bifidobacteria and lactobacilli – GalOS, Inulin
 - Increase in butyrate producers
 - Eubacterium, Faecalibacterium, Roseburia - Resistant starch, polydextrose, soluble corn fiber
HEALTH BENEFITS

- Microbes that are correlated with disease
 - Faecalibacterium
 - Inflammatory bowel disease-decrease in Faecalibacterium
 - Anti-inflammatory properties
 - Soluble corn fiber, polydextrose, inulin, fructo-oligosaccharides, pea fiber
 - Increased Firmicutes and decreased Bacteroidetes
 - Linked with obesity
HEALTH BENEFITS

- Changes in metabolites
 - Increase in SCFA, especially butyrate
 - Inulin, fructooligosaccharides, GalOS
 - Decrease in ammonia, phenols, and indoles

- Recent approach
 - Correlating shift in microbiota to indices of gut health
 - PCA plots of microbes and fermentative end-products
Lachnospiraceae and Lactobacillaceae- positively linked with SCFA, negatively with phenols, indoles, and ammonia

Veillonellaceae- positively linked with fiber intake, negatively with phenols, indoles, ammonia, and BCFA

Hooda et al., 2012
RESPONSE OF GUT MICROBIOTA TO PREBIOTICS IN GENETICALLY AND DIET-INDUCED OBESE MICE

- Ob/ob mice fed control diet- Ob-CT
- Ob/ob mice fed control diet with prebiotics (oligofructose)- Ob-Pre
- Fed for 5 weeks
- Pyrosequencing of V1-V3 region of 16S rDNA
- Oral glucose tolerance test

Everard et al., 2011
RESULTS

- Effect of prebiotic treatment using 16S rDNA analysis
 - Phylum
 - ↑Bacteroidetes, Actinobacteria, Proteobacteria
 - ↓Firmicutes
 - Family
 - Bifidobacteriaceae- only present in Ob-Pre group
 - Genera
 - Bifidobacterium- only present in Ob-Pre group
RESULTS

- Prebiotic treatment
 - Lowered fasting glycemia
 - Improved glucose tolerance
 - Decreased fat to muscle mass ratio
 - Decreased plasma triglycerides
 - Improved gut barrier function
 - Lowered plasma LPS concentrations
 - Reduced the expression of oxidative stress and inflammatory markers
TO ADVANCE THE FIELD OF PREBIOTICS...

- Compositional analysis of potential prebiotics
 - Monomeric composition
 - Chain length
 - Linkages
 - Branching
 - Side chains

- Prebiotic activity of natural foods
 - Soybean products
 - Beet fiber
 - Whole grains and co-products
TO ADVANCE THE FIELD OF PREBIOTICS...

- Microbiota beyond bifidobacteria
 - Detailed composition – 16S rDNA pyrosequencing
 - Metabolic function – metagenomics approach
- Need to study microbiome-indices of health relationships
- How do prebiotics achieve health benefits in diseased populations?