The Flavor World of Childhood: Basic Biology and Health Implications

Julie A. Mennella, PhD
Monell Chemical Senses Center
Philadelphia, PA
Financial Disclosures

• No relevant financial relationships with any commercial interests.
• Research supported by NIH grants HD37119, HD0723201 and DC01128.
Focus: Normal Development

• Simple question that gets to heart of something quite complex
• How to identify true effects of development;
• Normal function provides insights into vulnerabilities and opportunities.

Many chronic illnesses that plague modern society derive in large part by poor food choices, dictated by our taste preferences.

• Too much sugar and salt
• Too few vegetables and fruits
• Pattern is apparent in youngest members of our society.
• How can we account for patterns of food choice that seem antithetical to health, and for the difficulties in changing them?

• How do individuals and society manage the rich abundance of food that now characterizes this evolutionary blink of an eye we find ourselves in?
Biological Substrate

Understanding what children are eating and the obesity epidemic must incorporate the biological substrate.
Biology predisposes children to consume diets that may lead to obesity:

- Mismatch of inborn, evolutionarily driven taste preferences and current food environment.
• Humans evolved in *fluctuating* and *uncertain* environments where the primary challenge was to obtain enough nutrients, while avoiding the abundant poisons found in plants.

• In response to challenge, sensory systems evolved to detect and prefer the once *rare* calorie- and sodium-rich foods that taste sweet or salty, while rejecting potentially toxic ones that taste bitter.
Biology predisposes children to consume diets that may lead to obesity:

• Mismatch of inborn, evolutionarily driven taste preferences and current food environment;

• Detrimental consequences of not being exposed to flavors of healthy foods early in life.
Flavor Senses

• Central to identifying food and enable us to perceive our chemical world
 — primary signals of food, a basic biological commodity.
• Gatekeepers and warn GI system of incoming nutrients
• Source of extreme pleasure and pain
Senses of Taste and Smell

• Functioning before birth;
• Not miniature adults;
• Inborn responses yet inherent plasticity.
The Taste of Pleasure
Sweet Taste
Infancy

• Within hours of birth, infants exhibit a strong preference for sweet tastes.

• Convergence of findings
 – Intake
Infancy

- Within hours of birth, infants exhibit a strong preference for sweet tastes.
- Convergence of findings
 - Intake
 - Suckling patterning

Sucking curves generated by term (a: latex nipple; b: sucrose nipple) and preterm (25-36 wks gestational age) c: latex nipple; d: sucrose nipple) infant. Maone et al., 1990
Infancy

• Within hours of birth, infants exhibit a strong preference for sweet tastes.

• Convergence of findings
 – Intake
 – Suckling patterning
 – Facial expressions

Steiner et al., Neurosci Biobehav Rev 2001
Infancy

• Within hours of birth, infants exhibit a strong preference for sweet tastes.

• Convergence of findings
 – Intake
 – Suckling patterning
 – Facial expressions
 – Heart rate
 – Blunts expression of pain

Barr et al., 1999
Good News:
Baby born attracted to taste signal for mother’s milk

- Children are attracted to taste signal for calories (e.g., fruits) during periods of growth;
- Blunts expression of pain;
- Masks the bad tastes.
Bad News: Children’s Vulnerability to Current Food Environment

• Understanding their vulnerability is key to develop evidence-based strategies;

• Why is fruit intake below recommended levels?
Are refined sugars supernormal stimuli?
The Taste of Poison
Bitter Taste
Bitter Taste

• Rejection protects against harm from potentially toxic agents
 - protects animal from consuming toxic compounds and being poisoned
 - protects plant producing these chemicals from being eaten
• Heightened sensitivity during childhood.

courtesy of Dr. K. Berridge, University of Michigan Neurosci Biobehav Rev 2001
Initial Acceptance of Fruits and Vegetables

• Always will be easier to introduce
 – fruits than vegetables
 – orange than green vegetables
• We cannot easily change the basic ingrained biology of avoiding bitterness and liking sweets to get children to prefer broccoli to candy.

• If this is the bad news, the good news arises from knowledge gained from our experimental research on how, beginning very early in life, sensory experience can shape and modify flavor and food preferences.

Our biology is not necessarily our destiny!
How do we learn to like fruits and vegetables?

Components: Flavor, Texture, Color
Behavioral and dietary risk factors for non-communicable diseases

Figure 1. Deaths and Burden of Disease Attributable to Selected Behavioral and Dietary Risk Factors in 2010 and the Metabolic and Physiological Mediators of Their Hazardous Effects.

High-income regions are Australasia, the Asia-Pacific region, North America, and western Europe. The figure shows deaths (Panel A) and disease burden (Panel B) attributable to the total effects of each individual risk factor. There is overlap among the effects of risk factors because of multicausality and because the effects of some risk factors (e.g., physical inactivity) are partly mediated through other risk factors (e.g., high body mass index [BMI]). Therefore, the deaths and disease burden attributable to individual risk factors cannot simply be added together. DALYs denotes disability-adjusted life-years. Data are from Lim et al.9

Ezzati and Riboli. NEJM 369: 954-964, 2013
Earliest Information about Nutrition comes from the Mother

Neville et al., 2012
• Variety of flavors are transmitted from mothers’ diet to ‘first foods’.
• Types of flavors experienced are unique for each infant.
• Flavor memories are formed if mother eats the food.
RCT: Infants of mothers randomized to eat carrots during pregnancy or lactation

Timing of Mothers' Carrot Consumption

- Pregnancy
- Lactation
- None

Proportional Response

ate more carrots
And liked the taste of carrots.

Timing of Mothers’ Carrot Consumption

Mother’s Perceptions

Infants’ Faces of Distaste

thought they liked it more

made less faces of distaste

Proportional Response

Timing of Mothers’ Carrot Consumption

Pregnancy Lactation None

Pregnancy Lactation None
More fruits in mothers’ diet, more accepting their infants will be upon first taste of fruits (if breastfed).
This isn’t unique to humans!

“It’s not innate knowledge. It’s learned and part of their culture.”

F. Provenza, Utah State University
Flavor Bridge

• This pattern makes evolutionary sense because the foods that a mother eats when she is pregnant and nursing are the flavors associated with foods she prefers or, at the very least, with foods she has access to.
• First way (not the only way) we learn about flavors of foods.
Learning about Food

• Presence of a food in the environment does not ensure that the animal will learn to eat this particular food.

• Rather, food preferences increase with repeated exposures and variety and are strongly influenced by the conditions in which the exposure occurs.
Both breastfed and formula-fed infants learn via repeated tastings and variety!

<table>
<thead>
<tr>
<th>Target Food</th>
<th>8-10 days later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peaches</td>
<td>↑ acceptance of peaches ↔ No effect on green bean acceptance</td>
</tr>
<tr>
<td>Pears</td>
<td>↑ acceptance of peaches ↔ No effect on green bean acceptance</td>
</tr>
<tr>
<td>Variety of Fruits</td>
<td>↑ acceptance of novel fruit ↔ No effect on vegetable acceptance</td>
</tr>
<tr>
<td>Carrots</td>
<td>↑ acceptance of carrots</td>
</tr>
<tr>
<td>Green Beans</td>
<td>↑ acceptance of green beans</td>
</tr>
<tr>
<td>Green Beans and then Peaches</td>
<td>↑ acceptance and liking of green beans</td>
</tr>
<tr>
<td>Variety of Vegetables (between and/or within meal)</td>
<td>↑↑ acceptance of target and novel vegetables ↑ acceptance of novel food (chicken)</td>
</tr>
</tbody>
</table>
How do we learn about foods?

Amniotic Fluid and Milk

Repeated Exposure

We build on the familiar flavor, increasing complexity.

But what about those who are deprived of these experiences?

Peer Modeling
“..infrequent intake of fruits and vegetables during late infancy is associated with infrequent intake of these foods at 6 years of age.”
Bottom Line

• Where you start influences where you end up;
• Deprivation model: Most children don’t get the experiences to learn to like certain fruits and vegetables
 - Early taste deprivation remolds CNS
 - From the age of 2 years, an American is more likely to eat a manufactured sweet than a fruit
• Mothers feed their children what they eat (they don’t eat baby food; nor do toddlers).
Hope: Celebrate Parenthood

• There are brief periods in life when old routines fall apart and buying habits are suddenly in flux: one such moment is around the birth of a child;
• Same is true for health behaviors;
• Being pregnant and then a parent is strongest motivator to change or modify behaviors.

C. Duhigg, NY Times 2012
Child-like Wonder of Science

- Basic research in humans and animal models is the key to continued advances and applications.
- Elegance and simplicity in fundamental principles.
- **Food is more** than source of calories
 - Pleasure, identity, relationship to environment
 - Vulnerability of childhood