Taste

SWEET
Sugar

SALT
NaCl
(Sodium Chloride)

SOUR
Lemon Vinegar

BITTER
Caffeine Quinine

UMAMI
MSG Savoury
Sodium Chloride Usage
Sensory

- Salty taste
- Sweet at low concentrations
- Suppresses bitterness
- Enhances / modifies flavour
- Fullness and thickness
- Visuals
- Stimulates salivation at higher concentrations
Taste of Inorganic Salts

<table>
<thead>
<tr>
<th>Salt</th>
<th>Taste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>Sweet (low level) → Salt</td>
</tr>
<tr>
<td>Lithium Chloride</td>
<td>Sweet → Sour → Salt</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>Sweet → Bitter → Salt</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>Bitter/Sour/Sweet → Bitter/Salt/Sour (+other)</td>
</tr>
<tr>
<td>Lithium Sulphate</td>
<td>Sweet, (Bitter) → Sour</td>
</tr>
<tr>
<td>Potassium Sulphate</td>
<td>Sweet → Bitter/Salt/Sour</td>
</tr>
<tr>
<td>Magnesium Sulphate</td>
<td>Salt → Bitter / suppressing</td>
</tr>
</tbody>
</table>

Shallenberger, 1993
Kilcast & den Ridder, 2007
Beachamp & Breslin, 1995
Table Salt vs. Sea Salt

Table Salt

Maldon Sea Salt
<table>
<thead>
<tr>
<th>Sodium Alginate</th>
<th>Gelling Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Ascorbate</td>
<td>Antioxidant</td>
</tr>
<tr>
<td>Sodium Benzoate</td>
<td>Preservative (fruit juices, jams, beverages)</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>Leavening agent in some baking</td>
</tr>
<tr>
<td>Sodium Caprylate</td>
<td>Binder, emulsifier, anti-caking</td>
</tr>
<tr>
<td>Sodium Carboxymethyl cellulose*</td>
<td>Bulking agent, stabiliser</td>
</tr>
<tr>
<td>Sodium Caseinate</td>
<td>Emulsifier, thickener, binder, texturiser,</td>
</tr>
<tr>
<td>Sodium Citrate*</td>
<td>Control of acidity and stability, aid in emulsification, improve rehydration</td>
</tr>
<tr>
<td>Sodium Erythorbate</td>
<td>Antioxidant</td>
</tr>
<tr>
<td>(Mono)Sodium Glutamate (MSG)*</td>
<td>Flavour enhancer</td>
</tr>
<tr>
<td>Sodium Lactate and Diacetate</td>
<td>Prevention bacterial growth</td>
</tr>
<tr>
<td>Sodium Nitrite/ Nitrate*</td>
<td>Curing Agent</td>
</tr>
<tr>
<td>Sodium Phosphates*</td>
<td>Buffer/emulsifying salt, stabiliser</td>
</tr>
<tr>
<td>Sodium Propionate</td>
<td>Preservative, Mould inhibitor</td>
</tr>
<tr>
<td>Sodium Saccharin</td>
<td>Intense Sweetener</td>
</tr>
<tr>
<td>Sodium Sulfite</td>
<td>Prevention darkening, flavour & vitamin loss (during drying)</td>
</tr>
</tbody>
</table>
Ways to reduce salt

- Salt substitutes
- Salt enhancers
- Stealth
- Sodium chloride availability
- Reformulation
Salt Substitute

Sodium chloride saltiness

Potassium chloride saltiness

Dzendolet & Meiselman, 1967
Example – Canned Vegetable Soup

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt</td>
<td>Reduced 41%</td>
</tr>
<tr>
<td>Carrots</td>
<td>Increased 13%</td>
</tr>
<tr>
<td>Potatoes</td>
<td>Increased 13%</td>
</tr>
<tr>
<td>Dried Peas</td>
<td>Replaced by frozen peas</td>
</tr>
<tr>
<td>Green Beans</td>
<td>Removed</td>
</tr>
<tr>
<td>Swede</td>
<td>Added</td>
</tr>
<tr>
<td>MSG</td>
<td>Removed</td>
</tr>
<tr>
<td>Sugar</td>
<td>Reduced 9%</td>
</tr>
</tbody>
</table>

Robinson, 2007
Reduction by changing salt particle form
Influence of Saliva on Salt Perception

- Mixing of Food with saliva
- Dissolution Rate
- Transport to receptors in mouth
Salts Evaluated

Sainsbury’s Table Salt Morton Dendritic Salt Alberger Fine Prepared Flour Salt Premier Fine Prepared Flour Salt

Microfine Salt Microsized 95 Extra Fine Salt LFI Freeze Dried Salt
Time-intensity responses

![Graph showing time-intensity responses for different salt types](image)
Amorphous Salt vs. Table Salt

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>Supplier</th>
<th>Structure</th>
<th>Particle Size (µ) Range (Majority)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>Table Salt</td>
<td>Sainsbury</td>
<td>Cubic crystalline</td>
<td>200-500 (400-500)</td>
</tr>
<tr>
<td>LFI</td>
<td>100% Salt</td>
<td>LFI</td>
<td>Cubic / glass-like</td>
<td>5-10 µ particles</td>
</tr>
</tbody>
</table>
Salt Intensity

LSD = 9.4

TS LFI LFI/TS: 90/10 80/20 70/30 60/40 50/50
Reducing Salt by Modifying the Perception of Saltiness in Emulsion
Oil in Water Emulsion

INTERNAL AQUEOUS PHASE
W/O/W Emulsion

Confocal Microscopy Image

Bar = 5µ
References

- Phelps, T. Et al. (2006). ‘Sensory issues in salt reduction’. Abstracts | Food Quality and Preference 17, 629-634
Acknowledgements

- Stan Cauvain, BakeTran
- Maldon

Funding
- Defra, UK

LFI
- Trained panel
- David Kilcast
- Kathy Groves
- Sara Lawson
- Stuart Clegg
- Fiona Angus
- Alice Pegg
- Corneel Den Ridder
- Chanchal Narain
- Tracey Phelps
Thank you

Cindy Beeren
Sensory & Consumer Science

cbeeren@leatherheadfood.com