



### Comparative Toxicity of Ethyl and Methyl Mercury

- Exposure and toxicity issues for methylmercury.
- Risk assessments for methylmercury.
- Comparative pharmacokinetics of ethyl and methylmercury.
- Comparative toxicities of ethyl and methylmercury.
- General conclusions.





#### General Toxicity and Risk Assessment Issues

- Methylmercury is a developmental neurotoxin in people.
- The developing fetus is roughly 5 10 times more sensitive than adults.
- The relative sensitivity of infants to methylmercury is unknown but they are likely more sensitive than adults.
- Effects at low level exposures are difficult to evaluate.
- Pattern of exposure (peak exposures vs chronic exposures) are important.
- Methylmercury is ubiquitous and nearly everyone has some exposure.
- Initial efforts to establish safe exposure levels acknowledged the need for further studies on populations with low levels of exposure.





#### **Mercury Air Emission Point Sources**

- Electric utility
- Medical waste incineration
- Municipal waste combustion
- Manufacturing processes
- Chlor~alkali plants
- Pulp and paper
- Numerous other uses





#### **Life Cycle of Mercury**







# Predicted Effect of Reduced Mercury Local Deposition Rates on Fish Methylmercury Levels\*



<sup>\*</sup> Provided by R. Harris, Tetra Tech Environmental





# Some Existing Risk/Health Assessments for Methylmercury

EPA RfD  $0.1 \,\mu g/kg/day$ 

ATSDR MRL 0.3 μg/kg/day

WHO  $0.47 \,\mu g/kg/day$ 

North Carolina 0.17 µg/kg/day

NAS  $\sim 0.1 \,\mu g/kg/day$ 





### Blood and Hair Levels of Methylmercury

|                                   |                                                 | Blood (ppb) | <u>Hair (ppm)</u> |
|-----------------------------------|-------------------------------------------------|-------------|-------------------|
| NAS-2000                          | Benchmark (0.05)<br>Benchmark/10                | 58<br>5.8   | 12<br>1.2         |
| CDC-2001                          | Women 16 - 49 (mean)<br>Children 1 - 5 (mean)   | 1.2<br>0.3  |                   |
|                                   | Women 16 - 49 (90th%)<br>Children 1 - 5 (90th%) | 6.2<br>1.4  | 1.4<br>0.4        |
| Seychelles                        | Maternal (mean)                                 |             | 6.8               |
| Faroes                            | Maternal (mean)<br>Cord                         | 22.9        | 4.3               |
| North Carolina<br>Fish Eaters     | Adults (mean)                                   |             | 3.3               |
| North Carolina<br>Non-fish Eaters | Adults (mean)                                   |             | 0.4               |





#### **North Carolina Hair Mercury Levels**\*



<sup>\*</sup> Provided by Dr. Gregory Smith, NC DHHS





#### **Toxicity of Thiomersal**

Adult squirrel monkeys were administered thiomersal equivalent to ethylmercury doses of 1 or 6 µg/kg/day (Blair et al, 1975).

- Significant conversion to inorganic mercury.
- High levels in kidney-lower levels in brain.
- No evidence of toxicity.





#### **Toxicity of Ethylmercury and Methylmercury**

Adult male and female rats were administered 5 daily doses of equimolar concentrations of ethyl or methylmercury by gavage and tissue distribution, neurotoxicity and nephrotoxicity assessed (Magos et al, 1985).

- Neurotoxicities of methyl and ethylmercury were similar although higher levels of inorganic mercury were seen in brains of ethylmercury treated rats.
- Renal damage was greater in ethylmercury treated rats.
- Neither time-course nor dose response attempted.





#### **Biological Half Life in People**

Methylmercury 40 - 70 days

Ethylmercury 30 - 50 days

Note: Little or no information on differences between infants, children, or adults.





### Infant Exposure to Methyl and Ethylmercury

| Dietary exposure<br>to methylmercury                                                                  | 0.02 - 0.2 μg/kg/day                                                |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Ethylmercury exposure by thiomersal vaccines  - 2 months - 4 months - 6 months Averaged over 4 months | 4 - 18 μg/kg<br>3 - 11 μg/kg<br>3 - 11 μg/kg<br>0.1 - 0.3 μg/kg/day |
| EPA RfD Faroe Islands  Women of child-bearing age                                                     | 0.1 μg/kg/day<br>0.3 μg/kg/day                                      |





## Some Toxicological Comparisons of Interest

|         |        | Brain:Blood Concentration Ratio |             |  |
|---------|--------|---------------------------------|-------------|--|
|         |        | <u>MeHg</u>                     | <u>EtHg</u> |  |
| 3 days  | Male   | 0.066                           | 0.029       |  |
|         | Female | 0.089                           | 0.023       |  |
| 10 days | Male   | 0.078                           | 0.028       |  |
|         | Female | 0.116                           | 0.026       |  |

Methylmercury passes the blood brain barrier 3 - 4 times faster than ethylmercury

From Magos, 1985 and 2001





### Clinical Manifestations of Ethylmercury Poisoning Episodes

- Speech disorders
- Vision disorders
- Tremor
- Ataxia
- Spasticity
- Delerium
- Death

Blood levels greater than 500 ppb can produce adverse effects.

Subtle measures of developmental neurotoxicity (as done for Methylmercury) have not been evaluated.





#### **Ethylmercury Toxicity**

- Ethylmercury is a neurotoxin.
- Infants may be more susceptible than adults.
- Ethylmercury is approximately 5 times less acutely toxic than methylmercury.
- Data are not adequate to compare potencies of ethylmercury and methylmercury for developmental neurotoxicity.
- The mechanisms responsible for organomercurial caused developmental neurotoxicity are unknown and this also complicates evaluation of structure/ activity relationships.





#### Comparative Critical Toxicology Studies on Thiomersal - Ethylmercury and Methylmercury

- Developmental neurotoxicity assessing dose response and age dependent responses.
- Mechanistic studies focused on critical changes in gene function and cellular pathways.
- Evaluation of possible sensitive subpopulations based on genetic predisposition, diet, and cumulative risk.
- Biomarkers of exposure including hair need to be evaluated.





#### **Conclusions**

- Ethylmercury is probably slightly less toxic than methylmercury.
- However, the database for ethylmercury is weak which creates considerable uncertainty in risk assessment comparisons.
- Ethylmercury should be considered equipotent to methylmercury as a developmental neurotoxin. This conclusion is clearly public health protective.
- Ethylmercury exposure from vaccines (added to dietary exposures to methylmercury) probably caused neurotoxic responses (likely subtle) in some children.