Host Defense and Immunomodulation of mucosal Candidiasis

Paul L. Fidel, Ph.D.
Louisiana State University Health Sciences Center School of Dentistry
Center of Excellence in Oral and Craniofacial Biology
Candida albicans

- **Dimorphic** fungal organism
 - Blastoconidia (yeast) – 25°C, low pH (< 5.0)
 - Hyphae – 37°C, high pH (> 5.5)
- **Commensal** organism of mucosal tissues - normal flora
 - Developed *Candida*-specific immunity
 - Blastoconidia
- **Opportunistic pathogen** of mucosal tissues
 - Hyphae
 - Oropharyngeal candidiasis (OPC) (Thrush)
 - Denture stomatitis (DS)
 - Vulvovaginal candidiasis (VVC)
 - Recurrent VVC (RVVC)
Candida albicans (in tissue)
Oral Candidiasis
Epidemiology of Mucosal Candidiasis

- Oropharyngeal candidiasis (OPC)
 - Disease of immuno-compromized persons
 - HIV-infected

- Vulvovaginal candidiasis (VVC)
 - Disease of immuno-competent and otherwise healthy women

- Denture Stomatitis (DS)
 - Disease of immuno-competent otherwise healthy denture wearers

- Host defenses (immunity) responsible for protection are expected to be very different for VVC, DS, OPC
Terms - Immunology

Host defense

- **Cells**
 - Leukocytes
 - T cells (CD4, CD8); B cells (adaptive IR)
 - Neutrophils; macrophages (innate IR)
 - Epithelial cells (mucosal) (innate IR)

- **Cytokines** – soluble biological response modifiers
 - Interleukins
 - Chemoattractants (chemokines)

- **Receptors** – bridge the cells and cytokines for biological responses
Terms for today’s talk

- Cells
 - CD4 T cells; CD8 T cells**
 - Neutrophils (PMNs)
 - Epithelial cells

- Receptors
 - E-cadherin
 - Annexin-A1

- Cytokines (biological response modifier)
 - Alarmins
Objectives

- Host defense against *Candida albicans* at different mucosal sites is extremely different.

- Immune factors associated with protection and susceptibility to infection are unique to the anatomical site.

- Role of mucosal biofilm in pathogenesis is likewise different for different mucosal sites.
Host defense against Mucosal Candidiasis

- **Dogma for host defense against mucosal candidiasis**
 - CD4 T cells → Protection/resistance to infection

- **Host defense against OPC → dogma with caveats**
 - HIV disease → lose CD4 T cells → increased susceptibility
 - OPC → recurrent infections, sporadic infections; no infections
 - Do other immune responses function in some capacity for protection?
 - CD8 T cells play a role in protection when CD4 T cells lost

- **Host response against VVC → against dogma**
 - No role for CD4 T cells (or CD8 T cells)
 - Epithelial cells (resistance), neutrophils (susceptibility)

- **Host response against DS → ??**
Oropharyngeal Candidiasis (OPC) in HIV Disease

HIV^+OPC^+ <200 CD4 cells
CD8 T cells in OPC lesions

OPC^- site Buccal mucosa OPC^+ site

Epithelium Lamina propria Normal activated memory T cells

Myers et al., 2003
Cellular migration into tissues

- Circulating lymphocyte enters the high endothelial venule in the lymph node.
- Binding of L-selectin to GlyCAM-1 and CD34 allows rolling interaction.
- LFA-1 is activated by chemokines bound to extracellular matrix.
- Activated LFA-1 binds tightly to ICAM-1 and diapedesises—lymphocyte migrates into the lymph node.
Adhesion molecules in OPC

McNulty et al., 2005

*Longitudinal study- Quimby et al. 2011

\(\alpha_4\beta_7\) (T cells) - **MAdCAM** (tissue) \(\rightarrow\) Migration to mucosa \(\rightarrow\) CD8 T cells migrated into tissue

\(\alpha_6\beta_7\) (T cells) - **E-Cadherin** (tissue) \(\rightarrow\) Migration of cells through mucosa

Dysfunction!
Host susceptibility to OPC

Figure 1. OPC: Protection, susceptibility, and results of treatment with ART/PI or IFN-γ

- **OPC- < 200 CD4⁺**
 - Protected
 - *Primary defense: CD4⁺ T cells*
 - below protective threshold
 - *Candida SAPs - low*
 - *Epithelium E-cadherin - high*
 - *Recruited CD8⁺ T cells migrate to epithelium*

- **OPC⁺ < 200 CD4⁺**
 - Susceptible condition
 - *Primary defense: CD4⁺ T cells*
 - below protective threshold
 - *Candida SAPs degrade E-cadherin*
 - *Epithelium E-cadherin - low*
 - *Recruited CD8⁺ T cells halted at lamina propria/epithelium interface*

- **OPC⁻ < 200 CD4⁺**
 - Post-therapy: IFN-γ or ART/PI
 - *Primary defense: CD4⁺ T cells*
 - below protective threshold
 - *Candida SAPs inhibited by PI or IFN-γ*
 - *Epithelium E-cadherin restored*
 - *Recruited CD8⁺ T cells migrate to epithelium*

- **Legend**
 - CD8⁺ T cell
 - * Candida SAP - active
 - * Candida SAP - inactive
 - E-cadherin⁺ epi cell
 - Yeast
 - Hyphae
Host defense against vaginal Candidiasis (VVC)

No protective role for T cells

Tolerance
Immunoregulation by:
- PC dendritic cells
- TGF-β
- γ/δ T-cells
- CD25⁺Treg cells

Protection
Inhibition of *Candida* growth by *Epithelial cells* (Non-inflammatory)
↓
Asymptomatic colonization

Fidel and Coworkers; '90-'04
Fidel and Coworkers; '99-'10
Epithelial cell anti-*Candida* activity

Primary epithelial cells

- Oral EC
- Vaginal EC

Clinical relevance

OPC in HIV ('00), RVVC ('04)

OPC

- Infected; N=12
- Colonized; N=10
- Not colonized; N=6

* p<0.0005 between those infected and colonized

* VVC
Mechanism of epithelial cell anti-*Candida* activity

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires cell contact</td>
<td>No soluble factors</td>
</tr>
<tr>
<td></td>
<td>No phagocytosis</td>
</tr>
<tr>
<td></td>
<td>No oxidative/non-oxidative mechanisms</td>
</tr>
<tr>
<td></td>
<td>No microtubules/microfilaments</td>
</tr>
<tr>
<td></td>
<td>No intracellular signaling</td>
</tr>
<tr>
<td>Requires intact, but not necessarily live epithelial cells</td>
<td>Sensitive to heat/detergent</td>
</tr>
<tr>
<td></td>
<td>Resistant to fixation</td>
</tr>
<tr>
<td>Static, not cidal</td>
<td></td>
</tr>
<tr>
<td>Acid-labile</td>
<td></td>
</tr>
</tbody>
</table>

- **Annexin-A1***
- **33 kDa acid-labile protein**

Affects signaling cascades within cells that inhibit growth***

Tool for candidate molecule identification

Fidel and Co-workers ’00–’10
Innate immune symbiosis

- **Static activity** - **Symbiotic relationship**
 - Benefit - host: no inflammation, invasion of tissue
 - Maintains commensalism via Annexin-A1 activity on the yeast
 - Benefit - *Candida*: sacrifices growth for protection against other immune responses and killing
 - form of immune evasion – no **Danger** signals

- Annexin-A1 \rightarrow exploited to enhance activity
Host defense against vaginal Candidiasis (VVC)

Cross-sectional clinical studies; animal models

No protective role for T cells

Tolerance
Immunoregulation by:
• PC dendritic cells
• TGF-β
• γ/δ T-cells
• CD25+ Treg cells

Protection
Inhibition of Candida growth by Epithelial cells (Non-inflammatory)
↓
Asymptomatic colonization

Symptomatic infection
Acute inflammatory response
↓
Neutrophils (PMNs) (non-clearing)

Fidel and Coworkers; '90-'04
Fidel and Coworkers; '99-'10
Fidel and Coworkers; '04-'12
Cellular infiltrate = symptomatic infection

- Women with no history – 90% asymptomatic
- Women with infrequent VVC – 55% symptomatic
- Women with infrequent VVC in susceptible state – 90% symptomatic
Vaginal PMN influx in response to Candida

Humans – natural history

Asymptomatic condition

Symptomatic condition

PMNs
- Candida
- Symptoms

Mouse model

uninoculated

inoculated

Low PMN

High PMN

Epithelial cells

Candida condition

PMNs = pathology

Signal

differential early adherence
Chemotactic Signal??

- **Cytokines/chemokines** → symptomatic vs asymptomatic
 - Pro-inflammatory, activation, T cell
 - Proteomics → identify unique protein in vaginal secretions

- **S100A8/S100A9 proteins** → Alarmins
 - Low MW Calcium-binding proteins
 - Expresses in neutrophils, monocytes, activated macrophages and keratinocytes, and epithelial cells
 - Associated with inflammatory processes and correlates to PMN infiltration
 - Considered a biomarker for inflammation
Identification of PMN chemotactic factors

S100A8, S100A9 = S100 alarmins

- Confirmed by ELISA/Western blot (protein) and PCR (mRNA)
- Produced by vaginal epithelial cells in response to *Candida*
- Anti-S100A8 inhibited PMN migration by vaginal lavage fluid in in vitro chemotaxis assay

Yano et al. Infect Immun 2010
S100A8 Alarmins can stimulate PMN migration

In vitro

- PMN Chemotaxis

In vivo

- Vaginal PMNs
Diagnostics/Treatment

- Current diagnostics for VVC/RVVC limited
 - Challenges
 - *Candida* is commensal → present in asymptomatic state
 - Positive diagnosis requires symptoms and culture positive
 - Current diagnostic tests based on organism only
 - Diagnostic test = *Candida* and symptoms
 - Alarmins = symptoms?
 - Diagnostic evidence of symptomatic VVC

- Immunotherapy
 - Block/neutralize alarmins
 - Reduce/eliminate symptoms
 - Relegate *Candida* back to commensal status
Candida Mucosal Biofilm Formation

- *Candida* forms biofilms both on oral and vaginal mucosa
 - Kinetics and architecture similar to in vitro biofilm formation
- *Candida* mutants (efg1\(^{-/-}\), bcr1\(^{-/-}\)) colonize both tissues but do **not** form biofilms

DAY185 (WT)
EFG1\(^{-/-}/BCR1^{-/-}\)
Mucosal biofilm not required for S100 alarmin response.
Candida-associated Denture Stomatitis (DS)

Rat Denture System

Lee et al. 2011
Candida forms a biofilm on the denture and palate in vivo

Denture

Palate

2 4 6 8 weeks post-inoculation

Johnson et al. 2012
Clinical Score

Clinical Score = 1
Pinpoint erythema & edema

Clinical Score = 2
Diffuse erythema & edema

A

Weeks Post-Inoculation

Clinical Score

7% 33% 62%
80% 66% 38%
13%

B C D
Clinical Score = 1 Pinpoint
Clinical Score = 2 Diffuse erythema & edema
Clinical Scores

- WT
- bcr1/bcr1
- efg1/efg1
Model of Immunopathogenesis of Denture stomatitis

- Innate Recognition & PMN recruitment
- Amplification of Inflammation

- Oral Epithelium
- Denture Biofilm
- Denture Biofilm + Tissue Colonization
- Denture Biofilm + Tissue Biofilm

- Time
Candida Mucosal Biofilm Formation

- **Denture stomatitis** – biofilm required for disease
 - Disease initiated after biofilm formation
 - Chronic rather than acute disease → biofilm dependent

- **Vaginitis**–biofilm not required for inflammation/symptoms
 - Disease is acute and initiated by adherence/sensitivity to epithelial cells
 - Biofilm likely more critical in treatment/clearance → drugs or immune response (i.e., PMN function, antibody function)
Overall Conclusions

- Host defense against *Candida albicans* is extremely different at different mucosal sites
 - Adaptive immunity – T cells (oral)
 - Innate immunity – PMNs, neutrophils, Epi (vagina)

- Immune factors associated with protection and susceptibility to infection are unique to the site
 - Alarmins → vagina (susceptibility)
 - Annexin-A1 → oral/vaginal Epi cells (protection)
 - E-cadherin → oral (protection)

- Role of mucosal biofilm in pathogenesis is likewise different for different mucosal sites
Acknowledgements

VVC
Junko Yano, BS
Melissa Barousse, BS
Mairi Noverr, Ph.D. and lab

OPC
Elizabeth Lilly, MS
Keleigh Quimby, DDS
Janet Leigh, DDS, BMD
Kelly McNulty, MS
Joe Vazquez, MD (HF, Detroit)

DS
Mairi Noverr, Ph.D.
Clorinda Johnson, MS
Heeje Lee, DDS
Alika Yu, DDS

Clinical Staff
LSU/Tulane CTRC/Ob/Gyn
Virginia Garrison, RN
Mary Meyaski-Schulter, RN
Kathy Dunlap, MD
Terri Espinosa, RN
Theresa Sheppard, RN

Grant support
NIAID; NIDCR
LVC/SLIIDR

[Logos of LSU Health Sciences Center, LSU/Tulane CTRC/Ob/Gyn, and LVC/SLIIDR]