Addressing DRI*: The Role of Partnerships

John H. Rex, MD
Chief Medical Officer & Director, F2G Ltd.
Chief Strategy Officer, CARB-X
Non-Executive Director & Consultant, Adenium Biotech ApS
Expert-in-Residence, Wellcome Trust
Operating Partner and Consultant, Advent Life Sciences
Voting Member (2015-18), Presidential Advisory Council on US CARB Initiative (PACCARB)

john.h.rex@gmail.com

Slides happily shared – just drop me a note

*DRI = Drug-Resistant Infections. The acronym AMR confuses the lay public as it suggests that somehow the person becomes resistant. DRI more often conveys the right message (Mendelson M et al. Antibiotic resistance has a language problem. Nature 545:23-25, 2017)
Acknowledgments

• This talk has benefited from experience gained in the CARB-X project and from work with Wellcome Trust

• Particular thanks and credits to
 – Kevin Outterson (CARB-X)
 – Tim Jinks (Wellcome Trust)
 – Joe Larsen (BARDA)

• The conversational nature of reality: The best ideas are produced only in debate with such colleagues!
Point of View: I’m an ID doctor who has spent 30 years (15 in academia, 15 in Industry) developing the tools needed for patient care – mainly new drugs, but also diagnostics

- **Antifungals**
 - Micafungin (A)
 - Caspofungin (A)
 - Anidulafungin (A)

- **Antibacterials (A) = Academia (P) = Pharma**
 - Fluconazole (A)
 - Voriconazole (A)
 - Anidulafungin (A)
 - Micafungin (A)
 - Ceftaroline (A)
 - Ceftaroline-AVI (P)
 - Ceftazidime-avibactam (P)
 - Aztreonam-avibactam (P)
 - AA139 (P)
 - Ceftazidime-avibactam (P)
 - F901318 (P)
 - Meropenem (P)
 - Ceftazidime (P)
 - Ceftazidime-avibactam (P)
 - Daptomycin (China, P)
Partnerships: What is possible?

Goal, scale, & output create a hierarchy

I. Share Information & methods
 – This is the simplest level

J. As in (I) + Joint setting of priorities + scale
 – Moving up to a global view can enable projects to become competitive at the international level

K. As in (J) + shared risk with intent to create public goods with market potential (or Knowledge)
 – Knowledge and public goods can amount to valuable infrastructure and be the equivalent of a road

OK, so the IJK is a little strained … but it helps organize the conversation
Context: The Global Agenda

• The WHO GAP (Global Action Plan)¹
 – Improve awareness & understanding of DRI
 – Reduce the incidence of infection
 – To develop the economic case for sustainable investment in new medicines, diagnostics, vaccines & other interventions
 – Optimize the use of antimicrobial agents
 – Strengthen knowledge through surveillance
 – Increase investment in new medicines, diagnostics, vaccines & other interventions

¹Lightly edited for flow and reordered to make it easier to give this talk.
The Global Agenda

• The WHO GAP (Global Action Plan)\(^1\)

 – Improve awareness & understanding of DRI
 – Reduce the incidence of infection
 – To develop the economic case for sustainable investment in new medicines, diagnostics, vaccines & other interventions
 – Optimize the use of antimicrobial agents
 – Strengthen knowledge through surveillance
 – Increase investment in new medicines, diagnostics, vaccines & other interventions

\(^1\)Lightly edited for flow and reordered to make it easier to give this talk
The Global Agenda

- The WHO GAP (Global Action Plan)\(^1\)

 - Improve awareness & understanding of DRI
 - Reduce the incidence of infection
 - To develop the economic case for sustainable investment in new medicines, diagnostics, vaccines & other interventions
 - Optimize the use of antimicrobial agents
 - Strengthen knowledge through surveillance
 - Increase investment in new medicines, diagnostics, vaccines & other interventions

\(^1\)Lightly edited for flow and reordered to make it easier to give this talk

Things won’t always stay in these simple buckets, but let’s take a tour of the current partnership landscape

(and with apologies in advance for an inability to mention everything!)
Sharing Information & Methods

• The WHO GAP (Global Action Plan)\(^1\)

 – Improve awareness & understanding of DRI

 – Reduce the incidence of infection

 – To develop the economic case for sustainable investment in new medicines, diagnostics, vaccines & other interventions

 – Optimize the use of antimicrobial agents

 – Strengthen knowledge through surveillance

 – Increase investment in new medicines, diagnostics, vaccines & other interventions

\(^1\)Lightly edited for flow and reordered to make it easier to give this talk
Sharing Information & Methods (1)

• Awareness & understanding of DRI
 – CDC: GET SMART (about antibiotics) (https://www.cdc.gov/getsmart/index.html)
 – General programs like this are easily copied & transferred

• Reducing incidence of both Infection and DRI
 – Good infection control: One hospital at a time
 – Good infrastructure, use of vaccines, etc.
 – Action is local but experience can be shared and transferred
Sharing Information & Methods (2)

- Economic case for sustainable investment in new medicines, diagnostics, vaccines, etc.
 - Antibiotics: the fire extinguishers of medicine
 - Greatest value is in their non-use
 - This creates an economic tension

- Multiple global conversations on new approaches
 - EU: DRIVE-AB (an IMI\(^1\) project): a 3-year multi-stakeholder effort to create novel business models
 - US: Duke-Margolis Antimicrobial Payment Reform Project: An FDA-funded project on delinking use from profit
 - UK: Chatham House; AMR Review: Reports and workshops

Sharing Information & Methods (3)

• Optimizing use of antibiotics
 – National or regional guidelines for human use
 – Methods to reduce / eliminate agricultural use

• (and one more): Sharing scientific knowledge
 – CARB-Xed and GARDP2: Workshops, webinars
 – Pew SPARK3: A shared-information web platform

1. US Gov’t + Wellcome Trust: CARB-X is a 5-year, $450m public-private partnership that funds preclinical research (http://www.carb-x.org/)
2. DNDi & WHO: GARDP is a project that seeks to deliver data and products addressing specific gaps (https://www.dndi.org/diseases-projects/gardp/)
3. The Pew Charitable Trusts: Coming very soon, SPARK (Shared Platform for Antibiotic Research & Knowledge) will be a web-based technical knowledge sharing platform
Joint Priorities & Scale

• The WHO GAP (Global Action Plan)¹

 – Improve awareness & understanding of DRI
 – Reduce the incidence of infection
 – To develop the economic case for sustainable investment in new medicines, diagnostics, vaccines & other interventions
 – Optimize the use of antimicrobial agents
 – Strengthen knowledge through surveillance
 – Increase investment in new medicines, diagnostics, vaccines & other interventions

¹Lightly edited for flow and reordered to make it easier to give this talk
Joint Priorities & Scale

• R&D Networks to study and develop antibiotics & diagnostics
 – GARDP: Networks for neonatal sepsis & sexually transmitted infections
 – JPIAMR: Joint Programming Initiative for AMR: Collaborative EU work
 – Diagnostic prizes: Longitude Prize, EC prize, NIAID prize
 – Wellcome Trust: developing collaborative clinical trial network

• Strengthen knowledge through surveillance
 – UK Fleming Fund: a £265 million government investment into improving laboratory capacity for diagnosis and surveillance of AMR
 – GLASS: WHO’s Global Antimicrobial Resistance Surveillance System
 – Plus many more at national scale (e.g., CDC’s NARMS)

• Global priority setting
 – We are steadily aligning on priority pathogens (next slide...)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumannii, carbapenem-R</td>
<td>Critical</td>
<td>Serious (MDR)</td>
<td>Yes</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa, carbapenem-R</td>
<td>Critical</td>
<td>Serious (MDR)</td>
<td>Yes</td>
</tr>
<tr>
<td>Enterobacteriaceae, carbapenem-R, 3rd-gen ceph-R (ESBL+)</td>
<td>Critical</td>
<td>Urgent (carbapenem-R)</td>
<td>Yes</td>
</tr>
<tr>
<td>Enterococcus faecium, vancomycin-R</td>
<td>High</td>
<td>Serious (VRE)</td>
<td>Yes</td>
</tr>
<tr>
<td>Staphylococcus aureus, methicillin-R, vancomycin-I/R</td>
<td>High</td>
<td>Serious (MRSA)</td>
<td>Yes</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>High</td>
<td>Serious (drug-R)</td>
<td>Yes</td>
</tr>
<tr>
<td>Campylobacter spp., fluoroquinolone-R</td>
<td>High</td>
<td>Serious (drug-R)</td>
<td>Yes</td>
</tr>
<tr>
<td>Salmonella spp., fluoroquinolone-R</td>
<td>High</td>
<td>Serious (drug-R)</td>
<td>Yes</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae, 3rd-gen ceph-R, fluoroquinolone-R</td>
<td>High</td>
<td>Urgent (drug-R)</td>
<td>Yes</td>
</tr>
<tr>
<td>Streptococcus pneumoniae, penicillin-NS</td>
<td>Medium</td>
<td>Serious (drug-R)</td>
<td>Yes</td>
</tr>
<tr>
<td>Haemophilus influenzae, ampicillin-R</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shigella spp., fluoroquinolone-R</td>
<td>Medium</td>
<td>Serious</td>
<td></td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td></td>
<td>Urgent</td>
<td></td>
</tr>
<tr>
<td>Candida spp. fluconazole-R</td>
<td></td>
<td>Serious (Flu-R)</td>
<td></td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td>Serious (drug-R)</td>
<td></td>
</tr>
<tr>
<td>Group A Streptococcus</td>
<td></td>
<td>Concerning (erythro-R)</td>
<td></td>
</tr>
<tr>
<td>Group B Streptococcus</td>
<td></td>
<td>Concerning (clinda-R)</td>
<td></td>
</tr>
</tbody>
</table>

Priority Pathogen Lists: There are now 3 and they help create global alignment
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumannii, carbapenem-R</td>
<td>Critical</td>
<td>Serious (MDR)</td>
<td>Yes</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa, carbapenem-R</td>
<td>Critical</td>
<td>Serious (MDR)</td>
<td>Yes</td>
</tr>
<tr>
<td>Enterobacteriaceae, carbapenem-R, 3rd-gen ceph-R (ESBL+)</td>
<td>Critical</td>
<td>Urgent (carbapenem-R), Serious (ESBL+)</td>
<td>Yes</td>
</tr>
<tr>
<td>Enterococcus faecium, vancomycin-R</td>
<td>High</td>
<td>Serious (VRE)</td>
<td>Yes</td>
</tr>
<tr>
<td>Staphylococcus aureus, methicillin-R, vancomycin-I/R</td>
<td>High</td>
<td>Serious (MRSA), Concerning (VRSA)</td>
<td>Yes</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>High</td>
<td>Serious (drug-R)</td>
<td></td>
</tr>
<tr>
<td>Campylobacter spp., fluoroquinolone-R</td>
<td>High</td>
<td>Serious (drug-R)</td>
<td></td>
</tr>
<tr>
<td>Salmonella spp., fluoroquinolone-R</td>
<td>High</td>
<td>Serious (drug-R)</td>
<td></td>
</tr>
<tr>
<td>Neisseria gonorrhoeae, 3rd-gen ceph-R, fluoroquinolone-R</td>
<td>High</td>
<td>Urgent (drug-R)</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae, penicillin-NS</td>
<td>Medium</td>
<td>Serious (drug-R)</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae, ampicillin-R</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shigella spp., fluoroquinolone-R</td>
<td>Medium</td>
<td>Serious</td>
<td></td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td></td>
<td>Urgent</td>
<td></td>
</tr>
<tr>
<td>Candida spp. fluconazole-R</td>
<td></td>
<td>Serious (Flu-R)</td>
<td></td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td>Serious (drug-R)</td>
<td></td>
</tr>
<tr>
<td>Group A Streptococcus</td>
<td></td>
<td>Concerning (erythro-R)</td>
<td></td>
</tr>
<tr>
<td>Group B Streptococcus</td>
<td></td>
<td>Concerning (clinda-R)</td>
<td></td>
</tr>
</tbody>
</table>

Looking just at the highest priority pathogens, there is good overall alignment.
Ris**k**, **K**nowledge, & Mar**ket** Goods

- The WHO GAP (Global Action Plan)\(^1\)
 - Improve awareness & understanding of DRI
 - Reduce the incidence of infection
 - To develop the economic case for sustainable investment in new medicines, diagnostics, vaccines & other interventions
 - Optimize the use of antimicrobial agents
 - Strengthen knowledge through surveillance
 - Increase investment in new medicines, diagnostics, vaccines & other interventions

\(^1\)Lightly edited for flow and reordered to make it easier to give this talk
Risk, Knowledge, & Market Goods

• These projects create knowledge and goods, both public and private
• Because of the scale, the synergies that flow from any partnership can have very impact
• Examples
 – IMI ND4BB
 – CARB-X
 – Market Entry Reward Partnership
IMI: The ND4BB Programme

New Drugs For Bad Bugs

ND4BB cross topic collaboration and dissemination

TRANSLLOCATION
- Research penetration and efflux Gram-negatives Data Hub and Learning from R&D experience

ENABLE
- Discovery & development of new drugs combatting Gram-negative infections

COMBACTE-NET
- a) Enabling Clinical Collaboration and Refining Clinical Trial Design
- b) Clinical Development of compound(s) for Gram-positives
- c) Clinical Development of MEDI4893

COMBACTE-CARE
- Clinical Development of antibacterial agents for Gram-negative antibiotic resistant pathogens

COMBACTE-MAGNET
- Systemic molecules against HAIs due to clinically challenging Gram-negative pathogens

iABC
- Inhaled Antibacterials in CF and non-CF BE

DRIVE-AB
- Driving re-investment in R&D and Responsible use of antibiotics

ND4BB Information Center
- All data generated is submitted and is accessible to all consortium partners

Drug discovery
- Drug development Gram-positives
- Economics and stewardship
IMI: The ND4BB Programme

New Drugs For Bad Bugs

ND4BB cross topic collaboration and dissemination

TRANS-LOCATION
Research penetration and efflux Gram-negatives Data Hub and Learning from R&D experience

ENABLE
Discovery & development of new drugs combatting Gram-negative infections

COMBACTE-NET
- a) Enabling Clinical Collaboration and Refining Clinical Trial Design
- b) Clinical Development of antibacterial agents for Gram-negative antibiotic resistant pathogons

COMBACTE-CARE
Clinical Development of antibiotic agents for Gram-negative antibiotic resistant pathogons

COMBACTE-MAGNET
Systemic molecules against HAIs due to clinically challenging Gram-negative pathogens

iABC
Inhaled Antibacterials in CF and non-CF BE

DRIVE-AB
Driving re-investment in R&D and Responsible use of antibiotics

ND4BB Information Center
All data generated is submitted and is accessible to all consortium partners

Drug discovery

Drug development

Drug development Gram-positives

Drug development Gram-negatives

Economics and stewardship

2017-06-21 - Partnerships & Philanthropy vs. AMR
Timeline and total budget estimation of the seven topics of the ND4BB programme

EC contribution (EFPIA contribution)
Pooled funding mechanism with $455.5M committed
- US Government (BARDA, NIAID) + Wellcome Trust
- Open architecture for additional funders

Goal: Accelerate preclinical R&D through Phase 1
- Therapeutics, diagnostics, preventatives
- Best science from anywhere in the world

Will fund >50 pre-clinical R&D projects over 5 years

Public-private partnership that leverages capital
- Successful applicants must bring some funds to the table
CARB-X Portfolio Priorities (Year 1)

<table>
<thead>
<tr>
<th>Area</th>
<th>Sub-Area</th>
<th>Priority*</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Rx</td>
<td>Gram-negative</td>
<td>Highest</td>
<td>Need to get this area moving</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Rapid diagnosis</td>
<td></td>
<td>Especially tools that allow therapy to be stopped or not started</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Predict susceptibility</td>
<td></td>
<td>Especially tools that give strong guidance on initiation (or not) of reserve agents</td>
</tr>
<tr>
<td>Prevention</td>
<td>Any</td>
<td></td>
<td>Scientific and development plausibility must be addressed</td>
</tr>
<tr>
<td>Indirect Rx</td>
<td>Any</td>
<td></td>
<td>Scientific and development plausibility must be addressed</td>
</tr>
<tr>
<td>Direct Rx</td>
<td>Gram-positive</td>
<td>Lowest</td>
<td>Reasonable options, at least for now</td>
</tr>
</tbody>
</table>

Priorities define the approximate shape of the overall portfolio. Priorities are expected to shift in future years.
CARB-X Antibacterial Product Portfolio: Eleven 30 Mar 2017 Awardees

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Product</th>
<th>Description</th>
<th>Priority</th>
<th>Development Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Abx Class?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Non-traditional Product?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Target?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hit to Lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Optimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraphase Pharmaceuticals</td>
<td>TP-6076</td>
<td>Next-generation tetracycline</td>
<td>✓</td>
<td>Acinetobacter + Enterobacteriaceae</td>
</tr>
<tr>
<td>Cidara Therapeutics</td>
<td>CD201</td>
<td>Bifunctional immunotherapy</td>
<td>✓</td>
<td>Acinetobacter + P. aeruginosa + Enterobacteriaceae</td>
</tr>
<tr>
<td>Microbiotix</td>
<td>T3SS Inhibitor</td>
<td>Virulence modifier</td>
<td>✓</td>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>Spero Therapeutics</td>
<td>SPR741</td>
<td>Potentiator</td>
<td>✓</td>
<td>Gram-negative activity</td>
</tr>
<tr>
<td>Entasis Therapeutics</td>
<td>ETX000</td>
<td>Oral Gram-negative combination</td>
<td>✓</td>
<td>Gram-negative activity</td>
</tr>
<tr>
<td>Forge Therapeutics</td>
<td>FG-LpxC</td>
<td>Inhibitor of LpxC</td>
<td>✓</td>
<td>Gram-negative activity</td>
</tr>
<tr>
<td>Oppilotech</td>
<td>LPS</td>
<td>Targets synthesis of LPS</td>
<td>✓</td>
<td>Gram-negative activity</td>
</tr>
<tr>
<td>ContraFect</td>
<td>Gram-negative lysins</td>
<td>Recombinant lysin protein</td>
<td>✓</td>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>Redx Pharma</td>
<td>NBTI</td>
<td>Dual-acting topoisomerase inhibitor</td>
<td>✓</td>
<td>Acinetobacter + P. aeruginosa + Enterobacteriaceae</td>
</tr>
<tr>
<td>Visterra</td>
<td>VIS705</td>
<td>Antibody-drug conjugate</td>
<td>✓</td>
<td>P. aeruginosa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Type</th>
<th>Technology</th>
<th>Feasibility</th>
<th>Optimization</th>
<th>Develop Product</th>
<th>Integrate & Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteus</td>
<td>Rapid Point-of-Care Diagnostic</td>
<td>Optical bacterial imaging</td>
<td></td>
<td></td>
<td></td>
<td>POC Diagnostic</td>
</tr>
</tbody>
</table>

CARB-X Antibacterial Product Portfolio: Eleven 30 Mar 2017 Awardees

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Product</th>
<th>Novelty</th>
<th>Description</th>
<th>Priority</th>
<th>Development Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetraphase Pharmaceuticals</td>
<td>TP-6076</td>
<td>✓</td>
<td>Next-generation tetracycline</td>
<td>✓ ✓</td>
<td>Acinetobacter + Enterobacteriaceae</td>
</tr>
<tr>
<td>Cidara Therapeutics</td>
<td>CD201</td>
<td>✓ ✓</td>
<td>Bifunctional immunotherapy</td>
<td>✓ ✓</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Microbiotix</td>
<td>T3SS Inhibitor</td>
<td>✓ ✓</td>
<td>Virulence modifier</td>
<td>✓ ✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Spero Therapeutics</td>
<td>SPR741</td>
<td>✓ ✓</td>
<td>Potentiator</td>
<td>✓ ✓</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Entasis Therapeutics</td>
<td>ETX000</td>
<td>✓ ✓</td>
<td>Oral Gram-negative combination</td>
<td>✓ ✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Forge Therapeutics</td>
<td>FG-LpxC</td>
<td>✓ ✓</td>
<td>Inhibitor of LpxC</td>
<td>✓ ✓</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Oppilotech</td>
<td>LPS</td>
<td>✓ ✓</td>
<td>Targets synthesis of LPS</td>
<td>✓ ✓</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>ContraFect</td>
<td>Gram-negative lysins</td>
<td>✓ ✓</td>
<td>Recombinant lysin protein</td>
<td>✓ ✓</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Redx Pharma</td>
<td>NBTI</td>
<td>✓ ✓</td>
<td>Dual-acting topoisomerase inhibitor</td>
<td>✓ ✓</td>
<td>Pre-Clinical</td>
</tr>
<tr>
<td>Visterra</td>
<td>VIS705</td>
<td>✓ ✓</td>
<td>Antibody-drug conjugate</td>
<td>✓ ✓</td>
<td>P. aeruginosa</td>
</tr>
</tbody>
</table>

Characteristics
- **New Abx Class?**
- **New Non-traditional Product?**
- **New Target?**

Priority Development Stage
- **CDC**
- **WHO**
- **Hit to Lead**
- **Lead Optimization**
- **Pre-Clinical**
- **Phase I**

Additional Information
- The above projects are Powered by CARB-X utilizing non-dilutive funding from BARDA, Wellcome Trust, & NIAID.
- The stage of development is approximate as of March 2017 (please refer to each company's website for updated information).
- Characterizations of new Abx Class and New Target by CARB-X, following Pew pipeline analysis:
- Other characterizations by CARB-X experts and external expert opinion. Abx = traditional small molecule antibiotic. Non-traditional Product = not a traditional small molecule antibiotic.

Already announced:
- $48m for 10 therapies + 1 diagnostic
- 3 novel class small molecules
- 4 non-traditional products
- 7 new bacterial targets

1 POC diagnostic

CARB-X Antibacterial Product Portfolio: Eleven 30 Mar 2017 Awardees

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Product</th>
<th>Novelty</th>
<th>Priority</th>
<th>Development Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetraphase</td>
<td>TP-6076</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Cidara Therapeutics</td>
<td>CD201</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Microbiotix</td>
<td>T3SS Inhibitor</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Spero Therapeutics</td>
<td>SPR741</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Entasis Therapeutics</td>
<td>ETX000</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Forge Therapeutics</td>
<td>FG-LpxC</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Oppilotech</td>
<td>LPS Targets</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>ContraFect</td>
<td>Gram-negative lysins</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Redx Pharma</td>
<td>NBTI</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
<tr>
<td>Visterra</td>
<td>VIS705</td>
<td>✓</td>
<td>✓</td>
<td>Phase I</td>
</tr>
</tbody>
</table>

More to come: Expect another round of announcements in July

By the end of Year 1, CARB-X will have committed to ~20 projects for up to $115m (if all options are exercised)

Most projects will be therapies. Would expect this level of support to lead to at least one novel mechanism agent.
Market Entry Reward Partnerships

• We need to change the way we buy antibiotics
 – Fire extinguishers again – we buy, but hope not to use
 – In economics terms, antibiotics are a positive externality: You benefit from them even if you don’t (personally) use them

• Market Entry Rewards (MER)
 – An insurance-like approach to addressing the positive externality
 – A reward for registering the agent that balances limited use of agent

• MERs have not yet been implemented but we are trying and this will require at least some global coordination
 – Shared Target Product Profiles for the MERs so drug developers have a relevant and reliable target
 – Allocation of relative financial obligations to avoid free riding (NOT a global fund, but some accountability)
Summary
The power of partnerships

The impact of these partnerships highlights the conversational nature of reality

I. Share Information & methods
J. I + J Joint setting of priorities + scale
K. I + J + shared risk with intent to create public goods with market potential (or Knowledge)

To succeed vs. DRI (AMR), we need to make all 3 work!

Thank you!