Surveillance for Vaccine-preventable Disease and Immunization Coverage

Anne Schuchat, MD

Director, National Center for Immunization and Respiratory Diseases, CDC

IOM Committee – National Vaccine Plan
Chicago, IL July 24, 2008
New, complex outcomes

Old clinical presentations now unfamiliar

Newly preventable pathogens

Recommended Immunization Schedule for Persons Aged 0–6 Years—UNITED STATES

For those who fall behind or start late, see the catch-up schedule

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Age</th>
<th>Birth</th>
<th>1 month</th>
<th>2 months</th>
<th>4 months</th>
<th>6 months</th>
<th>12 months</th>
<th>15 months</th>
<th>18 months</th>
<th>15–23 months</th>
<th>2–3 years</th>
<th>4–6 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B®</td>
<td></td>
<td>HepB</td>
<td>HepB</td>
<td></td>
<td></td>
<td></td>
<td>HepB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus®</td>
<td></td>
<td>Rota</td>
<td>Rota</td>
<td>Rota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphtheria, Tetanus, Pertussis®</td>
<td></td>
<td>DTaP</td>
<td>DTaP</td>
<td>DTaP</td>
<td>see footnote 3</td>
<td>DTaP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenza type b®</td>
<td></td>
<td>Hib</td>
<td>Hib</td>
<td>Hib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumococcal®</td>
<td></td>
<td>PCV</td>
<td>PCV</td>
<td>PCV</td>
<td>PCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivated Poliovirus</td>
<td></td>
<td>IPV</td>
<td>IPV</td>
<td>IPV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza®</td>
<td></td>
</tr>
<tr>
<td>Measles, Mumps, Rubella®</td>
<td></td>
<td>MMR</td>
<td></td>
<td>MMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varicella®</td>
<td></td>
<td>Varicella</td>
<td></td>
<td>Varicella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis A®</td>
<td></td>
<td></td>
<td></td>
<td>HepA (2 doses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningococcal®</td>
<td></td>
<td>MCV1</td>
</tr>
</tbody>
</table>
Challenging Surveillance Climate, Increasingly Complex Needs

- Health care sector:
 - fragmented delivery, financing strains

- Health IT:
 - EMRs, PHRs, privacy, interoperability, IIS uptake

- Complex needs for surveillance systems
 - Justify return on public investments
 - Monitor national, state, local programs
 - Track vax performance over time and pops.
 - Forecast resurgent disease, pockets of “need”
 - Initiate timely public health responses
Role for Surveillance for Vaccine-Preventable Disease

- Vital link between immunization policy & health outcomes
- Early warning system for changes in population susceptibility and force of infection
- Informs program monitoring
<table>
<thead>
<tr>
<th>What</th>
<th>Where</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reportable, Nationally Notifiable systems</td>
<td>All states</td>
<td>Support elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prompt public health response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitor national trends</td>
</tr>
<tr>
<td>Enhanced systems</td>
<td>Selected locations</td>
<td>Identify nat’l dis. trends</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitor new vaccine performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess policy</td>
</tr>
<tr>
<td>Laboratory-based systems</td>
<td>Selected laboratories</td>
<td>Inform vaccine formulation (flu, Pnc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess vaccine performance</td>
</tr>
<tr>
<td>Vaccination coverage (e.g. NIS)</td>
<td>All states, selected cities</td>
<td>Monitor state and national program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify disparities</td>
</tr>
</tbody>
</table>
Laboratory-based systems
Invasive Pneumococcal Disease rates in children aged <5 years, 1998 through 2006

CDC, ABCs/Emerging Infections Program Network
Total Acute Gastroenteritis (AGE) and Rotavirus AGE cases, Jan-April, 2006-2008

<table>
<thead>
<tr>
<th>Year</th>
<th>Total AGE</th>
<th>Rotavirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>405</td>
<td>227</td>
</tr>
<tr>
<td>2007</td>
<td>481</td>
<td>261</td>
</tr>
<tr>
<td>2008</td>
<td>268</td>
<td>16</td>
</tr>
</tbody>
</table>

New Vaccine Surveillance Network
Address More Complex Outcomes
Monitoring Complex Outcomes of New Vaccines and Recommendations

- **HPV Vaccine**
 - Cervical ca, other ca
 - HPV prevalence
 - CIN, Genital warts

- **Influenza, PCV13**
 - P&I, ILI - nonspecific
 - Pneumonia hosp’s

- **Rotavirus vaccines**
 - Diarrhea hospitalizations
Aggregating disparate information
Case definition

Clinical and demographic data (age, outcome, complications)

Laboratory data, +/- clinical specimen

Immunization history
Reasons unimmunized (Eg PBEs)

Epidemiologic context
Travel hx
Outbreak associated
School or Day-care information
Future Needs in Aggregating Data and Addressing More Complex Outcomes:
Better Use of Technology

- IT can address some, not all needs
- Large-linked databases useful when vax effects large, outcomes specific

But…
- Special lab testing needed for some key outcomes and interview needed for PH response
- Role for human touch in VPD tracking will evolve, but can’t be eliminated
- Improved dx tests still needed for some VPDs
Duration of Protection
Reported Pertussis Cases
U.S., 1922-2004

National Notifiable Disease Surveillance System (NNDSS)
Duration of Protection: Future challenges

- Low levels of many VPDs
- Less circulation‡ less natural boosting
- Assessing of long-term protection requires reliable correlate
- Surv. for breakthrough cases can inform booster dose policy
- Long-term monitoring of new outcomes needed (e.g., HPV, Tdap)
Indirect Effects
Herd (Indirect) Effect: Invasive pneumococcal disease in adults >18 years, 1998/99-2006, PCV7 serotypes

ABCs/Emerging Infections Program Network (CDC unpublished)
Indirect Effects: Future Issues

- Influenza vaccine recently recommended for all children 6 mo – 18 years
- Demonstrating important indirect or herd effects of influenza vaccination would
 - support sustainability of school-aged programs
 - overcome impact of stalled rates of influenza vaccination in elderly and high risk
 - reduce need to find more effective formulations for elderly and immunocompromised

Other needs: Assess indirect benefits of Tdap, rotavirus, meningococcal vaccination
Assess immunization coverage
Sustained High Levels of Protection in Preschool-Aged Children

2010 Target

DTP / DTaP(3+)
MMR(1+)
Polio (3+)
Hib (3+)
Hep B (3+)
Varicella (1+)
PCV 7 (3+)

National immunization survey
Immunization Registry Sentinel Sites: Dose 1 coverage in <3 mo olds of rotavirus vs. DTaP, PCV7

Data as of May 15, 2007
Immunization Coverage: The Way Forward

- Implement recent Strategic Assessment*
- Annual Teen NIS – state-specific, national
- Vax acceptance and SES modules
- Develop methods for sustainability:
 - Less landline use‡ census pilot (sample frame)
- Use Immunization Information Systems when uptake sufficient (pvt use << public currently)
- Address small-area variation, exemptors
 - Develop targeted approaches for hot spots
 - Registry efforts; stdzing school entry surveys

*Summary of internal/external strategic review to be distributed
Permit rapid public health response
Measles, US, 2008
As of July 11, N=132*

<table>
<thead>
<tr>
<th># Cases</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (16%)</td>
<td>< 12 mos</td>
</tr>
<tr>
<td>32 (25%)</td>
<td>12 mos - 4 years</td>
</tr>
<tr>
<td>41 (33%)</td>
<td>5-19 years</td>
</tr>
<tr>
<td>28 (22%)</td>
<td>20-49 years</td>
</tr>
<tr>
<td>5 (4%)</td>
<td>> 50 years old</td>
</tr>
</tbody>
</table>

38/41 (93%) of the school-aged children were PBEs

* Information on age was available for 126 cases
Need for VPD & IZ Monitoring: Greater than ever but getting more difficult?

- Complacency about disease risk
- Clinicians, parents lack familiarity with sx
- Lab assay challenges in vaccinated people
- Global interdependence
 - VPD risk around the world impacts risk here
- Local level coverage data most useful for program improvements – but least available
 - Resource-intensive unless comprehensive IIS or comparable system available
How will we know we’re there? Evaluation plans

- Measure progress toward disease elimination/reduction targets
- Measure progress toward achievement of coverage goals
- Report VPD burden and immunization coverage on annual basis
- Availability of data (coverage, incidence) at the program level where it is needed