Medical Device Surrogate Endpoints

Richard Kuntz, MD, MSc
Medtronic
Medical Device Lifecycle (Class III)
Pathophysiology-Treatment Variables

- Pre-Market Pilot & Pivotal Evaluation
- Ideals, Design, Bench & Mfg Validation
- Ideas, Design, Bench & Mfg Validation

- Post-Market Studies & Surveillance
- Next Gen Improvements & Obsolescence

- Device Design
- Bench Measurement
- Pilot Pivotal Outcomes
- Device performance
- Real World Outcomes
- Rare AE Long-term Effects

- Narrow Patient Factors
- Clinical, Device Stress
- Broad Patient, Operator Factors
- Unknown Disease, Device Factors

- Spec δ
- Patient Factors
- Clinical, Device Stress
- Broad Patient, Operator Factors
- Unknown Disease, Device Factors

- Patient, Operator Factors
- Unknown Disease, Device Factors
New Restenosis Concepts

Acute Gain
Late Loss
Net Gain

Kuntz, ...Baim
The importance of acute luminal diameter in determining restenosis
After coronary atherectomy or stenting. Circulation 1992;1827-1835
Curvilinear Late Loss BAR Relationship

(L. Mauri, J Orav, R Kuntz *Circulation* 2005)

Mean Late Loss vs. Predicted Restenosis Rate

- **Binary Angiographic Restenosis (%):** No Threshold

No Threshold

- **Mean Late Loss (mm):** 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
- **Mean Late Loss (mm):** 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0
In-Stent Late Loss and TLR

Current DES and BMS Results

![Graph showing in-stent late loss and TLR for various stents, including Cypher, Taxus, Endeavor, and BMS.](image)
Late Loss is Monotonic (derived from 22 RCTS)

The higher the Late loss, the wider the standard deviation

(L Mauri, R Kuntz, Circulation 2004)
In-Stent Late Loss Correlation with the Data
(L Mauri, R Kuntz, Circulation 2004)
Late Loss as a Surrogate Endpoint

Across individual patients in-stent late loss correlates with clinical restenosis:

\[c \text{ statistic} = 0.915, \text{ SIRIUS} \]
\[c \text{ statistic} = 0.918, \text{ TAXUS 4} \]

Not surprising, since LL and TLR are ascertained at the same time, and TLR is adjudicated based on the follow-up %DS (slight variation introduced by effect of RVD on %DS).

For true surrogacy, treatment-induced changes in the surrogate should reflect treatment-induced changes in the standard clinical endpoint.

Requires analysis across randomized trials of different treatments.
TLR Differences are related to LL Differences

(Regression Weighted by TLR Precision)

y = 0.1532x - 0.0116

$R^2 = 0.8298$

p<0.0005

32 Comparisons

17 BMS vs DES

3 DES vs DES

12 BMS vs BMS
Power: In-Stent Late Loss vs. BAR

Late Loss can be determined with certainty in as few as 50-100 subjects

TLR can be determined with certainty in >500 subjects

Assumptions:
- 35% treatment effect
- 200 subjects per arm
- $\alpha = 0.05$

Late Loss as a Surrogate for Coronary Stents

- LL is a good surrogate for BAR and TLR
- Value is in minor modifications and new design testing
- LL does not measure stent thrombosis, non-TLR revascularization, MI or death
- Few device surrogates are as simple or as well studied, still has limited applications
Medical Device Lifecycle (Class III)
Pathophysiology-Treatment Controls

Good method, describes practice, HA, representative sample, propensity control

Registry: Product Performance/Outcomes

Device Design → Bench Measurement → Pilot Pivotal Outcomes → Device performance → Real World Outcomes → Rare AE Long-term Effects

Spec δ
Narrow Patient Factors
Clinical, Device Stress
Broad Patient, Operator Factors
Unknown Disease, Device Factors

Medical Devices and Surrogates

- Validated surrogate endpoints for medical devices are rare, and implantable device durability and long-term effects are always problematic to study in the pre-approval space.
- The concept of surrogates could be extended to several device design elements such as computational bioengineering modeling.
- Product performance is another interesting endpoint (surrogate?), especially for prevention devices.
- The post approval space needs improved rigor with better observational statistical methods, and may be a valuable resource to balance pre- and post-approval burdens to keep pace with technology.