Fusing RCTs with EHR ‘Big Data’

Derek C. Angus, MD, MPH, FRCP

CRISMA Center, Department of Critical Care Medicine

Department of Health Policy and Management
McGowan Institute for Regenerative Medicine
Clinical and Translational Science Institute
University of Pittsburgh Schools of the Health Sciences
The post-approval world ...

• A data-poor, opinion-rich environment ...

• At approval, RCT evidence for a medical product
 • Too **broad**
 • Average, not ‘personalized’, efficacy estimates
 • Too **narrow**
 • Trial population not representative of general practice
 • Little **comparative** effectiveness

• Nonetheless, ...
 • Many want access
 • Others want more information
 • But, no one wants to be a guinea pig
Enter the era of ‘Big Data’

- Integration of ‘deep’ personalized data
 - Causal inferences on optimal care
 - Broad – ‘real-world’ practice
 - Narrow – ‘personal’ estimates
 - Comparative – considers all options
 - Vanderbilt-IBM ‘BioVU’ initiative

- ‘Live’ presentation of information at time of clinical decision-making
 - ‘Just-in-time’ cohort study in EHR
 - No guinea pigs
 - Longhurst et al. Health Affairs 2013
Evidence Generator Report Card

<table>
<thead>
<tr>
<th>Feature</th>
<th>‘Big Data’ Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage the EHR</td>
<td>✔️</td>
</tr>
<tr>
<td>Low incremental costs</td>
<td>✔️</td>
</tr>
<tr>
<td>Real-world ‘effectiveness’</td>
<td>✔️</td>
</tr>
<tr>
<td>Consider multiple therapies</td>
<td>✔️</td>
</tr>
<tr>
<td>‘Personalized’ estimates</td>
<td>✔️</td>
</tr>
<tr>
<td>Offer ‘live’ tailored options</td>
<td>✔️</td>
</tr>
<tr>
<td>Robust causal inference</td>
<td>✗</td>
</tr>
</tbody>
</table>

For causal inference, randomize!
Point-of-care (POC) Clinical Trials

• A clinical moment in the EHR ‘alerts’ the clinical trial machinery

• Targeting the large ‘pragmatic’ trial arena
 • 2 thiazide diuretics in >13k high BP Veterans (NCT02185417)
 • 2 aspirin doses in 20k CVD patients (ADAPTABLE) (PCORI)
Evidence Generator Report Card

<table>
<thead>
<tr>
<th>Feature</th>
<th>‘Big Data’ Analytics</th>
<th>POC Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage the EHR</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Low incremental costs</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Real-world ‘effectiveness’</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Consider multiple therapies</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>‘Personalized’ estimates</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Offer ‘live’ tailored options</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Robust causal inference</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Platform Trials

- **Adaptive trials**
 - Focus on disease, not a particular Rx
 - Multiple interventions (arms)
 - ‘Perpetual’ enrollment
 - Tailor choices over time
 - Response-adaptive randomization (RAR)
 - Biomarker-based ‘enrichment’ strategies

- **Focus on pre-approval space**
 - Emphasis on efficiency with (very) small sample sizes
 - Different therapies ‘graduate’ to next phase while trial continues

- **Examples**
 - I-SPY-2 platform for rapid Phase 2 screening and discovery in Breast CA
 - BATTLE for therapy-resistant NSCLC
 - Kim et al. Cancer Discovery 2011

Berry et al JAMA 2015
Response-adaptive randomization

Randomization rule

Statistical model
Response-adaptive randomization

Odds weighted towards best RX

Randomization rule

Statistical model
Response-adaptive randomization

- New arms activated

C

A

B

D

Randomization rule

Statistical model

Response - adaptive randomization
Response-adaptive randomization

Randomization rule

Statistical model

Or dropped
Response-adaptive randomization

- Different weights for different patient groups
- Randomization rule
- Statistical model

- C
- A
- D
- Rx

DATA
<table>
<thead>
<tr>
<th>Feature</th>
<th>‘Big Data’ Analytics</th>
<th>POC Trials</th>
<th>Platform Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage the EHR</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Low incremental costs</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Real-world ‘effectiveness’</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Consider multiple therapies</td>
<td>✔️</td>
<td>✗/✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>‘Personalized’ estimates</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Offer ‘live’ tailored options</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Robust causal inference</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Feature</td>
<td>‘Big Data’ Analytics</td>
<td>POC Trials</td>
<td>Platform Trials</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Leverage the EHR</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Low incremental costs</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Real-world ‘effectiveness’</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Consider multiple therapies</td>
<td>✔</td>
<td>✗/✔</td>
<td>✗</td>
</tr>
<tr>
<td>‘Personalized’ estimates</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Offer ‘live’ tailored options</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Robust causal inference</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>
A novel blend of ‘POC’ + platform designs

- **REMAP**
 - Randomized
 - Embedded
 - Multifactorial
 - Adaptive
 - Platform trial

- **Ex: REMAP Severe Pneumonia**
 - EU FP7 PREPARE WP 5 program
 - (Australian NHMRC ‘OPTIMISE’ program)
 - >6,000 patients admitted to ICU with severe CAP
 - Simultaneously test
 - Different anti-microbial strategies
 - Different host immunomodulation strategies
 - Different ventilation strategies
 - Separate RAR and stopping rules for multiple potential subgroups

Angus DC. JAMA 2015
Key REMAP design features ...

- **Embedded**
 - Clinical ‘moment’ to trigger trial activation

- **Multifactorial**
 - Multiple domains of interventions
 - Multiple subgroups

- **Adaptive**
 - Response-adaptive randomization
 - Enrichment

- **Patients are preferentially assigned to best performing arm**
 - Allocation is random, but NOT 50:50
 - Odds of assignment proportional to odds of success
 - Not a guinea pig!
REMAP severe pneumonia

- **Embedded**
 - ICU admission orders
 - Approved in Netherlands with delayed consent

- **Multifactorial**
 - 12 regimens (3 x 2 x 2)
 - 4 subgroups
 - 48 estimates of treatment effect

\[Z = [g] + [R] + [\text{Time}] + [\text{Inter}] + [\text{Interv, Shock}] + [\text{Interv, Hypox}] + [\text{Interv, Interv}] \]

<table>
<thead>
<tr>
<th>Factor 1</th>
<th>Antimicrobial</th>
<th>Immunomodulation</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-1</td>
<td>B-1</td>
<td>C-1</td>
</tr>
<tr>
<td>Factor 2</td>
<td>A-2</td>
<td>B-2</td>
<td>C-2</td>
</tr>
<tr>
<td>Factor 3</td>
<td>A-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ok, but ...

- **Data**
 - Quality and integration of EHR within large systems or across consortia
 - Standardized point-of-care clinical ‘moments’

- **Institutional commitment**
 - Leadership, financial support, and appropriate incentives

- **Ethics**
 - Part of the ‘comparative effectiveness’ debate

- **Statistics and design**
 - Power and alpha error
 - Bayesian plus simulation vs. closed form frequentist solutions
Ok, but ...

- Reporting and dissemination
 - Rules for ‘graduating’ winners and losers by subgroups

- Funding
 - Who pays for interventions?
 - Who funds overall trial design?

- Oversight
 - What should be studied? In what order?
 - Framed as a VOI exercise
 - Who should be in charge?

- Integration with other clinical research programs
Conclusions

• The post-approval space is a mess

• Conflating the EHR with ‘Big Data’ analytics could make things worse
 • The allure of Big Data should not thwart efforts to randomize

• But, huge barriers to randomizing in the post-approval space
 • Answers are too broad and too narrow
 • No one wants to be a guinea pig

• The EHR ‘could’ provide an opportunity for a novel RCT design
 • ‘POC-CTs’ + ‘Platform’ trials = REMAP trials
 • Mimics ‘best choice’ for patient
 • Safer in the trial than out of it
 • Serves as a continuous quality improvement engine for a HC system

• But, a not inconsiderable set of challenges!!!!