Value of Information to Inform Decision Making Under Uncertainty
VALUE OF INFORMATION TO INFORM DECISION MAKING UNDER UNCERTAINTY

Katherine von Stackelberg, ScD
Center for Health and the Global Environment
Harvard Center for Risk Analysis
NEK Associates LTD
kvon@hsph.harvard.edu
Applications for Value of Information

• Prioritize where additional investment will lead to maximal benefits
• Identify research areas with the greatest likelihood of influencing clinical practice and patient outcomes
• Quantify the expected opportunity loss from decision making under uncertainty by estimating the value of obtaining additional information through research
Based on Bayes Rule: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Traditional hypothesis testing (e.g., clinical trial) gives you $p(data|hypothesis)$ but what you want is $p(hypothesis|data)$

There is a 90% chance that the net benefit of protocol a exceeds that of protocol b

$p(expected\ benefit\ of\ future\ study|existing\ clinical\ trial\ data)$
• Goal is to make the decision offering the greatest net benefit given constraints
• There is uncertainty in the inputs to the decision
• Expected cost of uncertainty is determined by the probability that a decision based on existing information will be wrong and the consequences if the wrong decision is made
• Expected value of (im)perfect information
The estimated mean net benefit of the new technology/drug/intervention
The amount and results of existing data
The value placed on opportunity losses when they occur
The size of the patient population who could benefit from the new technology/drug/intervention

Expected Value of Information is determined by:
EVPI = \(E\{\max_a \text{NMB}(a,s)\} - \max_a \{\text{NMB}(a,s)\} \)

- where \(E\{\max_a \text{NMB}(a,s)\} \) represents the expected net monetary benefits under perfect information
- \(\max_a E\{\text{NMB}(a,s)\} \) represents the expected net monetary benefits under prior information
- Assess the optimal action for all possible values of \(s \) and then determine the weighted average of the resulting values over the prior belief about the likelihood of each event
Costs and Benefits of the Decision

• Benefits described in terms of utilities, QALYs, DALYs
• $/QALY or other cost-effectiveness ratios
• Predicted costs as compared to monetized benefits
• Number of patients impacted is essential for population VOI
Example Decision Tree

<table>
<thead>
<tr>
<th>Standard Care</th>
<th>Quality</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_C</td>
<td>C_E</td>
</tr>
<tr>
<td></td>
<td>$1 - P_C$</td>
<td></td>
</tr>
<tr>
<td>New Treatment</td>
<td>P_T</td>
<td>$C_T + C_{SE} + C_E$</td>
</tr>
<tr>
<td></td>
<td>$1 - P_T$</td>
<td></td>
</tr>
<tr>
<td>P_{SE}</td>
<td>$[L(1 + Q_E)/2] - Q_{SE}$</td>
<td>$C_T + C_{SE}$</td>
</tr>
<tr>
<td></td>
<td>$1 - P_{SE}$</td>
<td></td>
</tr>
<tr>
<td>P_T</td>
<td>$L - Q_{SE}$</td>
<td>$C_T + C_E$</td>
</tr>
<tr>
<td></td>
<td>$1 - P_T$</td>
<td>C_T</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>C_T</td>
</tr>
</tbody>
</table>

Q and P are probabilities of certain events, and L is a constant.
• What would it be worth to conduct an observational study on $n = 60$ patients who are on the new treatment?
• EVSI = $5,550$ per patient; compare to cost
• What would be the EVSI for a study allocating $nT = 200$ patients to new treatment and another $nC = 200$ to standard care?
• EVSI = $3,260$ per patient
Conclusions

• Value of information techniques are used to evaluate research priorities based on reducing uncertainty

• Builds on existing cost-effectiveness studies using Bayesian statistics

• No “off the shelf” software – requires linking models, software platforms
Further Reading

• Andronis et al. 2015 A Practical Application of Value of Information and Prospective Payback of Research to Prioritize Evaluative Research, *Medical Decision Making*, DOI: 10.1177/0272989X15594369