Institute of Medicine Workshop: Regulatory Science

Success Requires Solving for the Larger Context

Theodore F. Reiss, M.D.
Key Question

• Can regulatory science be addressed by itself?

• Is addressing broader issues necessary for success?

Need to address broader issues
Important Environment Issues

- Transformational trends in pharma
 - Understanding biologic pathways is increasingly challenging
 - Identifying targets is incrementally difficult
 - Optimize population specific benefit /risk
 - Expenses rapidly increasing
 - Downsizing
 - Price pressures

- Public sector
 - Funds shrinking
 - Increased focus on discovery and development

These trends suggest collaborative solutions for a new educational, broader scientific, and funding environment
The Relationship Between Development and Regulatory Science

• Same coin, different sides (best practice)
 – Design and regulation of development (bench to bedside) programs
 • Public health objective focused
 – Result of pharma / regulatory dynamic
 • Cross disciplines / institutions
 • Scientific integration results in greater effectiveness
 • Evolved together

• Different from present academic paradigm
 – Deep, not broad
 – Level of certainty in decision making
 • Benefit/risk
 – Neither needed nor valued in present academic culture
Foundational Principles

• Addressing needs piecemeal will limit impact
• Vision for more integrated biomedical science environment
 – Align trends, systems thinking shapes structure
 – Efficiently and effectively advance health of the public
 – Pragmatic, evolutionary framework
 – Needs jump starting and commitment
 – Collaborative: university, government, and pharma

• University value and promote translational/ development/ regulatory thinking
 – Knowledge generation to application
 – Academic model before hyper specialization
 – Better integration, better foundation for regulatory performance

• Efficient and Robust
 – Leverage the structures already in motion: CTSAs/ NCATS
 – Basis for development, methodological research, education and teaching
Across Disciplines

Across translational stages

Across institutions

Present-Future Scientific Model
Model: Integrating Best Practices

- University centered
 - Dept. of “bench to bedside” science
 - Small, critical mass core faculty
 - Expertise: development/regulatory/translational know how
 - Center for collaborative efforts – facilitate translational projects
 - Internally: departments/centers
 - Externally: pharma, regulatory agencies, foundations
 - Education: center for teaching
 - Translational/development/regulatory science
 - Team/collaboration/leadership
 - Research: collaboratively identify gaps in development/regulatory
 - Initiate and collaborate on projects
- Linked across institutions through CTSA mechanisms into Virtual Institute of Drug Development
 - Academic or collaboration with pharma/foundations
 - Self sustaining version of IMI initiative
Gaps and Barriers

• Lack of broad university exposure and comfort with:
 – Expanded scientific values/world view
 • Broad vs. deep
 • Health solutions orientation vs. discipline only
 – Cognitive framework
 • Knowledge only vs. benefit/risk based on significant, consistent evidence
 – Broader pool of biomedical science stakeholders
 • Brake down of trust: polarization
 • University vs. regulatory vs. pharma: COI
 • Pharma does not trust university: lack of world view and thought process

• Translational, development, regulatory projects are generally not rewarded in university

• Teaching/ training/ research programs scattered
 – Not coordinated towards common objectives
Critical Requirements for Sustainable Progress in Development/Regulatory Science

• University: value and reward
 – Foster a culture for integrated research, career paths
 – Researchers and educators for translational/discovery and development/regulatory sciences
 – Educate selected leaders to think both deeply and broadly

• Industry: comfort with government and university partnership
 – Scientifically and operationally

• All: Promote collaborative scientific culture
 – Balanced, rationalize COI guidelines
 – Culture of a shared scientific purpose
Approaches to Funding Derive from Model

• **Concerted initiative**
 – Initiation and baseline funding from NIH through CTSA/NCAT
 • Not FDA’s mission
 • Universities: matching infrastructure funds

• **Balance portfolio of NIH funding initiatives towards discovery/ development**
 – Critical incentive

• **Other funds necessary**
 • Virtual Development Institute

• **Pharma(small to large)/foundations/venture collaborate with institute scientifically and operationally**
 – Revenue above costs fund research and education
 • The price of discovery and development is education and translational/development/regulatory science research
 – Other revenue alternates (user fees)
 • Approval tax on drugs
 • Revenue Tax (>1B sales/year)
Summary: Regulatory Science

• Success requires solving for the broader issues
 – Concerted collaborative effort necessary
 – Across university, government, industry
 – Need to form a broader scientific culture
 – University based architecture for translational, development, regulatory science and education

• Must be self sustaining
 – Virtual development institute