Evolution of Translational Omics: Lessons Learned and the Path Forward

Debra G..B. Leonard, MD, PhD, FCAP
Weill Cornell Medical College, New York, NY
for the
Oomics-based Test Committee of the IOM
Origin of the Task

- Omics tests developed at Duke to predict sensitivity to chemoRx
 - Papers suggested major advance in directing therapy
 - Concerns about accuracy and validity raised immediately
 - Clinical trials initiated in 2007, using tests to direct patient care
 - 2009 publication by Baggerly and Coombes:
 - Numerous errors
 - Inconsistencies in data
 - Failure to reproduce results

- 2010 letter to director of NCI, signed by more than 30 bioinformaticians and statisticians, urged suspension of trials
- NCI investigation of test and computational models
- NCI asked IOM to review situation and provide guidance for field
Committee Charge

1. Recommend an evaluation process to determine when omics-based tests are fit for use in a clinical trial.

2. Apply these criteria to omics-based tests used in three cancer clinical trials conducted by Duke investigators.

3. Recommend ways to ensure adherence to the development framework.
Committee Appointment

IOM appointed a 20 member committee with expertise in:

- Clinical medicine
- Clinical pathology
- Biomarker test development
- Biostatistics and bioinformatics
- Molecular biology
- Clinical trial design, conduct, and analysis
- Discovery and development of omics-based technologies and tests
- Ethics
- Patient advocacy
- FDA oversight
- Scientific publication
- University administration
IOM Committee

GILBERT S. OMENN (Chair), University of Michigan Medical School
CATHERINE D. DEANGELIS, Johns Hopkins School of Public Health
DAVID L. DEMETS, University of Wisconsin-Madison
THOMAS R. FLEMING, University of Washington
GAIL GELLER, Johns Hopkins University
JOE GRAY, Oregon Health & Science University Knight Cancer Institute
DANIEL F. HAYES, University of Michigan Comprehensive Cancer Center
I. CRAIG HENDERSON, University of California San Francisco
LARRY KESSLER, University of Washington School of Public Health
STANLEY LAPIRUS, SynapDx Corporation
DEBRA LEONARD, Weill Medical College of Cornell University
HAROLD L. MOSES, Vanderbilt-Ingram Cancer Center
WILLIAM PAO, Vanderbilt University School of Medicine
REBECCA D. PENTZ, Emory School of Medicine
NATHAN D. PRICE, Institute for Systems Biology
JOHN QUACKENBUSCH, Dana-Farber Cancer Institute
ELDA RAILEY, Research Advocacy Network
DAVID RANSOHOFF, University of North Carolina School of Medicine
E. ALBERT REECE, University of Maryland School of Medicine
DANIELA M. WITTEN, University of Washington
Study Funders
National Cancer Institute
Food and Drug Administration
Centers for Disease Control and Prevention
U.S. Department of Veterans Affairs
American Society for Clinical Pathology
College of American Pathologists.

Staff

Study Directors:
Christine Micheel, PhD
Sharyl Nass, PhD

Research Assistant:
Niharika Sathe, MHS

IOM Board Directors:
Roger Herdman, MD
Andrew Pope, PhD

Program Officers:
Erin Balogh, MPH
Laura Levit, JD

Mirzayan Fellows:
Sarah Domnitz, PhD
Julia Dooher, PhD

Senior Program Assistant:
Michael Park
22 External Reviewers

WYLIE BURKE, University of Washington
ADAM M. CLARKE, MedTran Health Strategies
SUSAN S. ELLENBERG, University of Pennsylvania
CHARIS ENG, Case Western Reserve University School of Medicine
MARCUS FELDMAN, Stanford University
DAVID B. FLANNERY, Georgia Health Sciences University
STEPHEN FRIEND, Sage Bionetworks
LARRY GOLD, SomaLogic, Inc.
STEVEN GOODMAN, Stanford University School of Medicine
ROBERT GRAY, Dana Farber Cancer Institute
STEVEN GRUBBS, Delaware Christiana Care Community Clinical Oncology Program
DAVID KORN, Harvard University
MARC LADANYI, Memorial Sloan-Kettering Cancer Center
BERNARD LO, University of California, San Francisco
DAVID MADIGAN, Columbia University
BETTIE SUE SILER MASTERS, University of Texas Health Science Center at San Antonio
CHARLES E. PHELPS, University of Rochester
DAN RODEN, Vanderbilt University Medical Center
LARRY SHAPIRO, Washington University School of Medicine
PETER SHIELDS, The Ohio State University Medical Center
STEVE TEUTSCH, Los Angeles County Public Health
DAVID WONG, Director of the Dental Research Institute, UCLA

Review Monitor: LAWRENCE D. BROWN, University of Pennsylvania
Review Coordinator: KRISTINE GEBBIE, Flinders University
Definition of an Omics Tests

• Composed or derived from multiple molecular measurements and interpreted by a fully specified computational model to produce a clinically actionable result
• Genomics, transcriptomics, proteomics, epigenomics, etc.
• NOT single gene or non-complex testing

Omics Test Characteristics
• Complex, high dimensional data sets
• Interpretation by a computational model
• High risk that computational model will overfit data
Recommended Framework for Evaluation of Omics Tests from Discovery to Clinical Use

Discovery and Test Validation Stage

- **Discovery Phase**
 - Candidate Test Developed on Training Set, Followed by Lock-Down of All Computational Procedures
 - Confirmation of Candidate Omics-Based Test using:
 1. An Independent Sample Set if Available (preferred); OR
 2. A subset of the Training Set NOT Used During Training (less preferred).

- **Test Validation Phase**
 - Define Clinical Test Method
 - Analytical Validation
 - Clinical/Biological Validation Using Blinded Sample Set
 - Defined, Validated, and Locked Down Test (Intended Use, Assay, Computational Procedures, and Interpretation Criteria)

Evaluation for Clinical Utility and Use Stage

Three Potential Pathways (IRB Approval and FDA Consultation)

- Prospective/Retrospective Study with Archived Specimens
- Prospective Clinical Trial; Test Does NOT Direct Patient Management
- Prospective Clinical Trial; Test Directs Patient Management

IDE Needed?

- No
- No
- Yes

- FDA Approval/Clearance or LDT Process for Clinical Test
- Additional High Quality Evidence to Evaluate Clinical Utility of the Test
 - Practice Guidelines and Reimbursement
 - Clinical Use

INSTITUTE OF MEDICINE
OF THE NATIONAL ACADEMIES
Advising the nation / Improving health
Discovery Phase of Omics Test Development (Research Laboratory Setting)

Discovery Phase

Candidate Test Developed on Training Set, Followed by Lock-Down of All Computational Procedures

Confirmation of Candidate Omics-Based Test using:
1. An Independent Sample Set If Available (preferred); OR
2. A subset of the Training Set NOT Used During Training (less preferred).
Recommendation 1: Discovery Phase

If candidate omics-based discoveries are intended for clinical development & use:

a. The tests should be confirmed using an independent set of samples from the discovery sample set.

b. Data, code, and metadata should be made available.

c. Candidate test should be defined precisely:
 - Intended clinical use
 - Molecular measurements
 - Computational procedures
Test Validation Phase

- IRB Approval and Consultation with FDA
- Define Clinical Test Method
- Analytical Validation
- Clinical/Biological Validation Using Blinded Sample Set
- Defined, Validated, and Locked Down Test (Intended Use, Assay, Computational Procedures, and Interpretation Criteria)
Recommendation 2: Test Validation

- Test should be discussed with FDA prior to validation studies.

- Test development and validation should be performed in a CLIA-certified clinical laboratory.
 - CLIA-accredited Laboratory if test result used for patient care
 - Research Lab okay if test not used for patient care, but not ideal if want to translate to clinical use

- CLIA laboratory should design, optimize, validate, and implement the test under current clinical laboratory standards.

- Analytical validation and CLIA requirements should be met by each laboratory in which test will be performed for clinical trial.
Evaluation for Clinical Utility and Use Stage

- Clinical utility is not assessed by FDA or in the LDT process
- Lack of FDA review does not mean the test lacks clinical utility
- Process of gathering evidence to support clinical use should begin before test is introduced into clinical practice
- Approaches:
 - Prospective / Retrospective Study
 - Prospective Clinical Trial
Evaluation for Clinical Utility and Use Stage

Three pathways:

- **Prospective/Retrospective studies** using archived specimens from previously conducted clinical trials

- **Prospective clinical trials** that directly address the utility of the omics-based test, where either
 - The test **does not direct** patient management, or
 - The test **does direct** patient management.
Recommendation 3: Evaluation for Clinical Utility and Use Stage

For investigators conducting a clinical trial to assess the clinical utility and use of an omics-based test that has been confirmed and validated as described in Recommendations 1-2, the committee recommends that:

a. Investigators should communicate early with the FDA regarding the Investigational Device Exemption (IDE) process and requirements.

b. Omics-based tests should not be changed during the clinical trial without a protocol amendment and discussion with the FDA. A substantive change to the test may require restarting the study.
Omics Report: A Personal Perspective

- While report focuses on omics tests for any disease, the pathway is relevant to any test development process (simple; oncology)
- Test development pathway is segmented into different groups who do not understand impact of their work on the next translational steps
- IOM Report defines best practices so everyone can understand the entire interrelated process with best practices at each step
- Barriers to use of the recommended pathway are complex and not addressed by the IOM Committee, and include:
 - Lack of funding for translational studies for test development
 - Lack of availability & access to annotated specimen/data sets
 - No process for establishing payment and level of payment
 - No teeth, only recommendations; but it is from the IOM
Report Released
March 23, 2012

To download or read the report:
www.nap.edu