Glutamate Biomarkers: ALS, Astroglia and Glutamate transporters

IOM– June 2010

Jeffrey D. Rothstein MD, PhD
Johns Hopkins University
Brain Science Institute
Depts of Neurology and Neuroscience
Targets for monitor Glutamate Neurotransmission
Astrocyte: Human vs rodent - complexity of processes

Single rat astrocyte envelopes 100,000 synapses
Single Human astrocyte envelopes ~2,000,000 synapses!!

(Oberhelm et al, J. Neurosci, 2009)
ALS – An Overview

Classification

- Sporadic ALS
 - Cause unknown
 - 90% to 95% of cases
- Familial ALS (FALS)
 - Genetically linked
 - 5% to 10% of cases
- Environmental ALS (e.g., Western Pacific ALS)
 - Possible dietary cause
 - Sometimes accompanied by symptoms of Parkinson’s disease and dementia
 - 2 fold incr risk Gulf War vets
Altered glutamate regulation in ALS:
Increased cerebrospinal fluid [glutamate] and decreased glutamate transport

CSF levels of glutamate elevated 3-10 fold in up to 40% of all ALS patients (n>300 worldwide)

Glutamate transport decreased by up to 95% in motor cortex and spinal cord

Focal, peri-neuronal loss of EAAT2 expression in sporadic, Mutant SOD1 and TDP43- based ALS: Leads to toxic extracellular glutamate

Human

<table>
<thead>
<tr>
<th></th>
<th>ALS</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAAT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAAT1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAAT3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EAAT2: Motor cortex

Rothstein et al, Ann Neurol, 1995

Rodent

Glutamate transport

Howland et al, PNAS 2001
ALS Therapeutics: Anti-glutamate repeatedly positive

- **Riluzole Phase 2/Phase 3**: up to 1 year increase survival (repeatedly positive in multiple followup trials)
- **Topiramate**: 25% longer median survival (those not losing wgt)
- **Ceftriaxone**: now under study
 - Nasal biopsy biomarker planned
Glial Cells contribute to pathogenesis in neurodegenerative diseases: Astroglia/Microglia and oligos are an important therapeutic target for ALS

<table>
<thead>
<tr>
<th>Disease</th>
<th>Target Neurons</th>
<th>Involvement of Other Cell Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer's disease</td>
<td>cortical and hippocampal neurons</td>
<td>not directly tested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>microglial dysfunction contributes to pathogenesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not directly tested</td>
</tr>
<tr>
<td>Parkinson's disease</td>
<td>dopaminergic neurons</td>
<td>express enzyme that induces toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>their activation precedes neurodegeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>elevated expression in oligodendrocytes suffices for disease</td>
</tr>
<tr>
<td>Huntington's disease</td>
<td>striatal neurons</td>
<td>mutant expression renders neurons vulnerable in culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>their activation occurs early and progresses with disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not directly tested</td>
</tr>
<tr>
<td>Spinocerebellar ataxia</td>
<td>Purkinje cells</td>
<td>mutant expression in Bergmann glia suffices for disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not directly tested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not directly tested</td>
</tr>
<tr>
<td>Prion disease</td>
<td>cortical neurons</td>
<td>PrP expression suffices for disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>microglial activation decreases prion infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>probably not important for pathogenesis</td>
</tr>
</tbody>
</table>
Astrocytic Glutamate Transporter Dysregulation in Disease

- Multiple acute and chronic neurologic injuries associated with altered glutamate transporter (GLT1/EAAT2) expression (e.g. ALS, HD, Alz, MS)
- Likely represents an altered astroglia and/or altered neuron-glial communication, astroglial-microglial interaction
- Understanding these pathways provides insight into
 - normal astroglial-neuron interactions
 - Pathways for drug discovery/defect correction
Altered expression/regulation of GLT1/EAA T2

- Due to loss of axonal/dendritic signaling
 - Altered astroglial promoter activation
 - KBBP binding protein; Neuron –stimulated astroglial transporter promoter regulation
 - Yang et al, Neuron, 2009
- Epigentent
 - Yang et al., 2009, Glia
- Micro RNA
 - Regan et al, unpublished
- Other pathways:
 - e.g. altered trafficking→degradation; sumylation (trotti)
- NOTE: In most cases- diseases that lead to reactive astrocytes/altered dendrites almost always associated with loss of GLT1
NINDS Neurodegeneration Drug Screening Consortium

- 26 Academic laboratories
- 29 Screening assays
- Blindly screened 1040 FDA approved drugs
 - ~750 FDA approved drugs, ~300 nutritionals/controlled substances
- Assays focused on various aspects of neurodegenerative disease pathways
 - Diseases: HD, ALS, PD, SMA, Kennedy’s
- 11 Assays ALS-Relevant:
 - SOD1 toxicity
 - Excitotoxicity
 - Mitochondrial function
 - SOD1 Protein aggregation

Screening Results: Best drug Cephalosporin antibiotics with 4 hits
Late ceftriaxone treatment increases survival of G93A SOD1 mice, delays loss of MN and increases EAAT2/GLT1.

(ceftriaxone, 200 mg/kg ip x 5-7 days; Start Rx: 90 days age)

(c) Rothstein et al., Nature 2005
Ceftriaxone/ß-Lactam: Subsequent published effects in other disease models

• Neural injury:
 – Radiation induced neural injury (invitro)
 – ALS model (invitro/in vivo)
 – Sindbis induced paralysis (in vivo)
 – GP120 toxicity (in vitro)
 – Huntington’s disease mouse (in vivo)
 – EAE induced damage (in vivo)
 – Stroke (in vivo)

• Synaptic activity/Behavior
 – Depression models (in vivo; = efficacy to Prozac)
 – Cocaine readministration
• Cell lines:
 • Rodent-astroglia (EAAT2 promoter fragment)
 • Human immortalized (EAAT2 promoter fragment)
 • Rodent EAAT2 BAC luciferase
How to effectively target drugs to monitor Glutamate Transporters? (e.g. EAAT2)

Development of an Astroglial Biomarker Program
Biomarkers: How to improve CNS drug discovery

Your Nose: A window to your brain

• How do we know if drugs really get to the brain and “work”?

• Need to **sample** brain tissue

• Instead:
 • Nasal olfactory mucosa
 • This tissue is easily accessible “real” nervous system tissue that can be biopsied, repeatedly in patients
Human and Rodent Expression of Brain Astroglial proteins EAAT2/GFAP in Olfactory tissue: Induction by an Astroglial Activator

A. Mouse and Human Biopsy: Detectable Astroglial EAAT2/GLT1 Protein

B. Experimental Astroglial EAAT2 Activator TAP: Induction of Rodent Nasal EAAT2

(Sattler et al, SFN 2007)
Human Nasal Olfactory Biopsy: EAAT2 Biomarker
Reliable Bioassay for Human EAAT2

- Experience in local biopsy protocol
- >80 controls:
 - 40 Psychiatry (A. Sawa)
 - 24 controls (age: 20-50; JHU/UMD)
 - 30 European
- Reliable, rapid clinic procedure
- Stable, low variability assays
- Ratio EAAT2/GFAP mRNA (qPCR) and EAAT2/OMP (qPCR)

(Sattler et al, SFN 2007)
Pathfinding Drug: RUX122 Validates Astroglial Biomarker

RUX122 Has No Effect on Neuronal and non-CNS Genes
Imaging Astroglial Biology

- Diagnostic Tool
- Biomarker for
 - patient selection
 - monitoring therapeutic effect
- Same biomarker in transgenic mouse model
Dynamic PET Imaging of Glutamate Transporters

• Phenotype ALS patients
 ▫ Loss of EAAT2 and increased CSF-Glutamate occurs in 40% of sporadic ALS patients
 ▫ In rodents, transporter changes occur at disease onset

• Measure Drug Efficacy
 ▫ Image before and during drug treatments targeted to glutamate transporters to monitor effects on transporter levels

• Broader Applications
 ▫ Altered excitatory transmission in multiple disorders (HD, AD, Epilepsy, Depression, Glioblastoma)
Ligand Development

1. Protein & Ligand Models
 R. Bridges
 Penetration: Potency & Selectivity

2. Ligand Synthesis
 J. Gerdes
 Syntheses

3. In vitro Pharmacology

4. CNS Distribution
 PK/PD

R. Sattler (Hopkins)
Synthetic Ligand Panel

1. $R = CH_3$
2. $R = H$
3. $R = CH_3$
4. $R = H$
5. $R = CH_3$
6. $R = H$
7. $R = CH_3$
8. $R = H$
9. $R_1 = R_2 = H$
10. $R_1 = R_2 = CH_3$
11. $R_1 = CH_3, R_2 = H$
12. $R_1 = H, R_2 = CH_3$

John Gerdes, University of Montana
Pharmacological Profile of EAAT ligands

IC₅₀ ([³H]-D-Aspartic Acid uptake measurements in overexpressed C17 cells) EAAT2 vs EAAT3

(Previously reported literature values: Dunlop, 2006; Greenfield, 2005)
Dose-Dependent Brain Penetration of RM005

Brain

<table>
<thead>
<tr>
<th>Time after injection [min]</th>
<th>RM005 (acid) [ng/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Graph of RM005 (acid) in Brain at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>3</td>
<td>![Graph of RM005 (acid) in Brain at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>10</td>
<td>![Graph of RM005 (acid) in Brain at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>30</td>
<td>![Graph of RM005 (acid) in Brain at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>60</td>
<td>![Graph of RM005 (acid) in Brain at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>90</td>
<td>![Graph of RM005 (acid) in Brain at 3mg/kg and 10mg/kg]</td>
</tr>
</tbody>
</table>

Plasma

<table>
<thead>
<tr>
<th>Time after injection [min]</th>
<th>RM005 (acid) [ng/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Graph of RM005 (acid) in Plasma at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>3</td>
<td>![Graph of RM005 (acid) in Plasma at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>10</td>
<td>![Graph of RM005 (acid) in Plasma at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>30</td>
<td>![Graph of RM005 (acid) in Plasma at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>60</td>
<td>![Graph of RM005 (acid) in Plasma at 3mg/kg and 10mg/kg]</td>
</tr>
<tr>
<td>90</td>
<td>![Graph of RM005 (acid) in Plasma at 3mg/kg and 10mg/kg]</td>
</tr>
</tbody>
</table>

Iv Injection of acid

n.a.: not applicable
Brain Penetration of RM005 After ProDrug Injection

Iv injection of ester
Increased Brain Penetration of RM005 After ProDrug Injection

![Graph showing increased brain penetration of RM005 after prodrug injection compared to acid injection over time.](image-url)
Generation of labelled transporter PET candidate

Prodrug tracer $[^{18}F]1$

Key Intermediate

Path C

Previously prepared ligand for pharmacology
RM005 AND RM006 Cross the BBB in WT Mice

Results thus far:

• iv injections of the methyl ester prodrug of aspartyl amide (Fluoro) leads to higher drug levels in brain than acid injection

• Labeling now underway- small animal testing soon

• Primate planned (?)2010

• Early human trial (Control/ALS) 2011?
Tools to Study Astroglia/Glutamate Transporters: normal & disease genetic regulation

- **BAC (full length gene) transgenic reporter mice:**
 - GLT1-eGFP/GLAST-DsRed
 - ALDHL1H1-eGFP
 - GFAP-eGFP
 - MCT1-TdTm

- **BAC-TRAP**
 - GLT1, ALDHL1H1, GFAP bac TRAP
 - For translated astroglial RNA capture

- **TG**
 - GLT1-8.3kb promoter/TdTm

(Regan et al, J. Neurosci, 2006)
iPS astroglia: Characterization

- GFAP+ after 4 mo (2ES, 4 iPS)
- Abundance 10%
- Differentiation: serum/BMP4

TABLE 2. Antibodies used to assess Glial Differentiation

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Antigen</th>
<th>Cell Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFAP</td>
<td>Glial fibrillary acidic protein</td>
<td>Astrocyte</td>
</tr>
<tr>
<td>GLT1</td>
<td>Glutamate transporter</td>
<td>Mature Astrocyte</td>
</tr>
<tr>
<td>AQ4</td>
<td>Aquaporin 4</td>
<td>Astrocyte</td>
</tr>
<tr>
<td>ALDH1L1</td>
<td>Aldehyde dehydrogenase 1.1</td>
<td>Mature astrocyte</td>
</tr>
<tr>
<td>GLAST</td>
<td>Glutamate transporter</td>
<td>Astrocyte/oligo</td>
</tr>
<tr>
<td>CC1</td>
<td>adenomas polyposis coli</td>
<td>Oligodendroglia</td>
</tr>
<tr>
<td>MBP</td>
<td>Myelin basic protein</td>
<td>Oligodendroglia</td>
</tr>
<tr>
<td>MAG</td>
<td>Myelin associated protein</td>
<td>Oligodendroglia</td>
</tr>
<tr>
<td>CNPase</td>
<td>Cyclic nucleotide phosphatase</td>
<td>Oligodendroglia</td>
</tr>
<tr>
<td>O4</td>
<td>Pro-oligodendroglia antigen</td>
<td>Oligo progenitor</td>
</tr>
<tr>
<td>PDGFRα</td>
<td>Platelet derived growth factor α</td>
<td>NG2/glial progenitor</td>
</tr>
<tr>
<td>NG2</td>
<td>Chondroitin sulfate proteoglycan</td>
<td>NG2/glial progenitor</td>
</tr>
</tbody>
</table>
Generation of EAAT2-BAC firefly luciferase reporter mice: utility for In vivo drug screening

EAAT2 Luciferase Promoter Reporter Mice
Tissue Activity

Body Region

100,000 fold incr in brain

(image adapted from GFAP luciferase mouse study; Xenogen)
Acknowledgements

Credit in my lab: Astroglial Biology Group

Lyle Ostrow MD, PhD
Brett Morrison MD, PhD
Young-jin Lee, PhD
Yongjie Yang, PhD
Yun Li, PhD
Jessica Carmen PhD
Yuanzheng Gao PhD
Ping Wu Zhang PhD
Ileana Lorenzini
Ying Li PhD
Melissa Regan PhD

Lin Jin
Svetlana Vidensky
Lyudmila Mamadova
Yoko Ayukawa
Irina Shats
Carol Coccia
Uma Balasubramanian

Students
Paul Sherer
Naomi Sell
Devon

Translation Team
Rita Sattler PhD
Eun Ju Yang
Sadia Ahktar
Rebecca Michaud

Collaborators
Johns Hopkins
Dwight Bergles
Nick Maragakis

Univ Lausanne
Pierre Magistretti
Patrick Aebisher
Luc Pellerin
D. Kieran

Univ Montana
R. Bridges
J. Gerdes

Harvard Univ
Kevin Eggan
Merit Cudkowicz

Columbia
Tom Maniatis
Chris Henderson

Support: NIH, MDA, P²ALS/Packard Center
Penetration Profile in WT Mice: RM005 and RM006

Study Design:
- iv injections of acid and methyl ester
- 3mg/kg; 10mg/kg
- Tissue collection (brain and plasma) at 1; 3; 10; 30; 60; 90 min
Penetration Profile in WT Mice

Method development with Ligand Standards #9 (acid) and #10 (dimethyl ester)

#9 = RM001

L-β-threo-benzyl-aspartic Acid

#10 = RM002

L-β-threo-benzyl-aspartate dimethyl ester

Initial Method Development Test Agents

Tissue LC/MS Measure

In vivo metabolism possible

Penetration