Developing New Molecular and Clinical Targets for Nervous System Disorders

Sam Gandy, M.D., Ph.D.

Mount Sinai Professor of Alzheimer’s Disease Research
Director, Center for Neurological Health and the NFL Neurological Center
Icahn School of Medicine at Mount Sinai

Accelerating Therapeutic Development for Nervous System Disorders towards First-in-Human Trials

April 8, 2013
APP/Aβ_{42} : Pathogenic and Protective Mutations with Known MOA

- Genetic forms ~homogeneous, but etiology of sporadic AD more pleiotropic
- Aβ_{42}/oAβ accumulation begins 15-25 yrs before symptoms
- Aβ_{42}/oAβ toxicity resistance factors poorly understood
- Aβ_{42}/oAβ-reducing agent (antibodies, vaccines, protease modulators) safety profile must be extremely favorable and should be less expensive than custodial care (~$500K-$1MM per patient)
What makes a good drug target?

Isabella Gashaw1, Peter Ellinghaus2, Anette Sommer1 and Khusru Asadullah1

1 Global Drug Discovery – Target Discovery, Bayer HealthCare, Muellerstrasse 178, 13342 Berlin, Germany
2 Global Drug Discovery – Target Discovery, Bayer HealthCare, Apolliner Weg 18a, 42596 Wuppertal, Germany

\textbf{BOX 1}

\textbf{Properties of an ideal drug target:}

- Target is disease-modifying and/or has a proven function in the pathophysiology of a disease.
- Modulation of the target is less important under physiological conditions or in other diseases.
- If the druggability is not obvious (e.g. as for kinases) a 3D-structure for the target protein or a close homolog should be available for a druggability assessment.
- Target has a favorable ‘assayability’ enabling high throughput screening.
- Target expression is not uniformly distributed throughout the body.
- A target/disease-specific biomarker exists to monitor therapeutic efficacy.
- Favorable prediction of potential side effects according to phenotype data (e.g. in k.o. mice or genetic mutation databases).
- Target has a favorable IP situation (no competitors on target, freedom to operate).
Properties of an ideal drug target:

- Target is disease-modifying and/or has a proven function in the pathophysiology of a disease.
- Modulation of the target is less important under physiological conditions or in other diseases.
- If the druggability is not obvious (e.g. as for kinases) a 3D-structure for the target protein or a close homolog should be available for a druggability assessment.
- Target has a favorable ‘assayability’ enabling high throughput screening.
- Target expression is not uniformly distributed throughout the body.
- A target/disease-specific biomarker exists to monitor therapeutic efficacy.
- Favorable prediction of potential side effects according to phenotype data (e.g. in k.o. mice or genetic mutation databases).
- Target has a favorable IP situation (no competitors on target, freedom to operate).
Properties of an ideal drug target:

- Target is disease-modifying and/or has a proven function in the pathophysiology of a disease.
- Modulation of the target is less important under physiological conditions or in other diseases.
- If the druggability is not obvious (e.g. as for kinases) a 3D-structure for the target protein or a close homolog should be available for a druggability assessment.
- Target has a favorable ‘assayability’ enabling high throughput screening.
- Target expression is not uniformly distributed throughout the body.
- A target/disease-specific biomarker exists to monitor therapeutic efficacy.
- Favorable prediction of potential side effects according to phenotype data (e.g. in k.o. mice or genetic mutation databases).
- Target has a favorable IP situation (no competitors on target, freedom to operate).
Novelties for consideration

- **Novel timing** of intervention in high risk subjects
- **Novel system** for screening for $\text{A}\beta_{42}/\text{oA}\beta$ reducing drugs
- **Novel approach** to secretase modulation (conventional target)
- **Novel biological antagonism** to $\text{A}\beta_{42}/\text{oA}\beta$ toxicity (unconventional target process)
Initiation of pathogenesis can be accurately identified in traumatic encephalopathy: Might existing Aβ42/oAβ reducing drugs improve outcome if given acutely post-TBI?
A-beta regulation by signal transduction

First messengers
- ACh
- Glutamate
- IL-1
- 5-HT₄
- Estrogen
- Testosterone

Second messengers
- cAMP
- Ca²⁺
- DAG

Protein kinases
- PKC
- PKA
- ERK
- ROCK1,2
- src
- JAK

Isoprenoid- and Rho-GTPase related signals
- FTI
- GGTI
- Rho
- Rac
- Rap

Protein phosphatases
- PP1
- PP2A

Electrical depolarization
Nerve terminals are likely to be one source of synaptic $\alpha\beta_{42}$.
Which neurotransmitter signaling pathways most closely mimic depolarization-induced Aβ42 metabolism at the synapse?
Synaptic Group II Metabotropic GluRs Modulate γ-Secretase Speciation of Aβ

DCG-IV stimulated generation of Aβ42 but not Aβ40

Pretreatment with mGluR2/3 antagonist LY341495 blocked DCG-IV stimulated generation of Aβ42
The mGluR2/3 antagonist BCI-838 reduced oAβ accumulation and improved learning and anxiety behaviors in APP transgenic mice.
APP transgenic mice showed exaggerated neurogenesis when treated with BCI-838:

Can neurogenesis act as an unconventional biological antagonist of \(\text{A}\beta \) toxicity?

Can neurogenesis act as an unconventional biological antagonist of tau toxicity?

Could such a drug be both acutely symptomatic and disease-modifying when administered chronically?
Novelties for consideration

- **Novel timing** of intervention in high risk subjects (e.g., acute post TBI)
- **Novel system** to screen for synaptic Aβ₄₂/oAβ reducing drugs
- **Novel approach** to secretase modulation (conventional target)
- **Novel biological antagonism** to Aβ₄₂/oAβ toxicity (unconventional target process, might not be Aβ₄₂/oAβ, so could be relevant to tauopathy as well)
- **Novel two-hit benefit**: Could a drug (e.g., BCI-838) offer both acute symptomatic and chronic disease-modifying benefits?
Past and Planned Future Development of BCI-838

Single- and multiple-ascending-dose first-in-man Phase I well-tolerated in young healthy controls x 2-3 wk by BCI for TRD indication

“First-in-geriatric-humans” RCT with prodromal/mild AD (w Mary Sano)

Fundraising for AD RCT in progress: Federal, private, philanthropic sources

Preclinical assessment in tauopathy models including TBI/CTE/PTSD ongoing

VA MERIT awarded to support preclinical development in TBI/CTE/PTSD

Fundraising for FTD (preclinical and RCT) in progress”: Federal, private, philanthropic sources