The Role of Phenotype in Selectively Enriching Patients for Clinical Studies

Developing Treatments for Dry Age-Related Macular Degeneration (AMD) Workshop
November 15, 2014
National Academy of Sciences Building, Lecture Room
2101 Constitution Ave., N.W., Washington, DC

Philip J. Rosenfeld, MD, PhD
Professor of Ophthalmology
Bascom Palmer Eye Institute
University of Miami Miller School of Medicine
Financial Disclosures

Acucela: Consultant/Research Grant
Advanced Cell Technology: Research grant
Alcon: Consultant
Alexion: Research grant/Consultant
Bayer Pharmaceuticals: Consultant
Boehringer Ingelheim: Consultant
Carl Zeiss Meditec: Research grant
Chengdu Kanghong Biotech: Consultant
Genentech: Research grant/Study advisory board
GlaxoSmithKline: Research grant/Consultant
Healios K.K.: Consultant
Oraya: Consultant
Hoffman-La Roche: Study advisory board
Vision Medicines: Consultant
Xcovery Vision: Study advisory board
Dry AMD Treatments: Therapeutic Goals

- Prevent vision loss
- Slow the loss of vision
- Restore lost vision
Dry AMD Treatments: Visual Acuity as an Endpoint?

- Visual acuity
 - Vision loss takes years
 - Unrealistic short-term clinical trial endpoint
 - Vision loss may not correlate with disease progression
 - Surrogate outcome/endpoint needed for clinical trials
Growth of GA with **no** loss of vision

+2.4 mm²

Baseline 20/25

6 Months 20/25

Autofluorescence

OCT Fundus Image

3.0 mm²

5.4 mm²
Growth of GA with loss of vision
+2.4 mm²
Vision loss ≠ disease progression

Baseline 20/40 → Week 26 20/125

Baseline 20/25 → Week 26 20/25

+2.4 mm²
Central vision loss depends on proximity of GA to foveal center*
Phenotype Enrichment Depends on The Surrogate Endpoint

- Surrogate anatomic endpoints:
 - Growth of geographic atrophy (color, autofluorescence, or OCT en face imaging)
 - Progression to neovascular AMD
 - Change in drusen area and/or volume
 - Progression from drusen to GA (in AREDS, 95% of GA had drusen)
 - Progression of AREDS severity scale
 - Changes in retinal/RPE/choroidal anatomy using a variety of imaging strategies
Phenotype Enrichment Depends on The Surrogate Endpoint

- Surrogate anatomic endpoints:
 - Growth of geographic atrophy (color, autofluorescence, or OCT en face imaging)
 - Progression to neovascular AMD
 - Change in drusen area and/or volume
 - Progression from drusen to GA (in AREDS, 95% of GA had drusen)
 - Progression of AREDS severity scale
 - Changes in retinal/RPE/choroidal anatomy using a variety of imaging strategies
Growth of Geographic Atrophy

- Phenotype enrichment:
 - Autofluorescence patterns (e.g. banded)
 - Bilateral vs. unilateral GA
 - Disruption/atrophy of photoreceptors at margins of GA imaged by OCT
 - Decreased retinal sensitivity at margins of GA measured by microperimetry
 - Low luminance deficits
 - Presence/absence of reticular pseudodrusen (subretinal drusenoid deposits) or decreased choroidal thickness
 - Delayed dark adaptation
Growth of Geographic Atrophy

- Phenotype enrichment:
 - Autofluorescence patterns (e.g. banded)
 - Bilateral vs. unilateral GA
 - Disruption/atrophy of photoreceptors by OCT imaging at margins of GA
 - Decreased retinal sensitivity by microperimetry at margins of GA
 - Low luminance deficits
 - Presence/absence of reticular pseudodrusen (subretinal drusenoid deposits) or decreased choroidal thickness
 - Delayed dark adaptation
Enlargement Rates of GA using Fundus Autofluorescence (FAF)

FAF Patterns

- 'None'
 - ER = 0.02 mm²/yr
- 'Focal'
 - ER = 0.36 mm²/yr
- 'Patchy'
 - ER = 1.84 mm²/yr
- 'Diffuse'
 - ER = 1.71 mm²/yr
- 'Banded'
 - ER = 2.52 mm²/yr
- 'Diffuse, Trickling'
 - ER = 3.78 mm²/yr

Example: Phase II and Phase III Lampalizumab Trials (Genentech/Roche)

Enrollment criteria:

• Bilateral GA
• Presence of hyperautofluorescence of either banded or diffuse patterns adjacent to the area of GA
• Area of GA: \(\geq 1 \text{ disc area} \) [DA] and \(\leq 7 \text{ DA} \) (if multifocal then 1 focal lesion \(\geq 0.5 \text{ DA} \))
Size vs. Unifocality vs. Multifocality

- Larger lesions appear to grow faster
- Multifocal lesions appear to grow faster
- Strategies to account for growth rate differences:
 - Square root transformation of area measurements
 - Correction for circularity index
AREDS Color Photo Measurements:
Change in area of GA over 4 years

Baseline Lesion Size
- LARGE >4 DA
- MEDIUM 0.75 - 4 DA
- SMALL 0.5 - 0.75 DA

Change in Area (mm²)

Growth rate depends on baseline lesion size

Geographic Atrophy: The Growth Rate Dilemma

- Growth rate increases with lesion size and multifocality
- As lesions grow larger, they grow faster
- Multifocality/multilobularity changes as lesions grow
- Variability in test-retest measurements increases as the area of GA increases
- What’s the solution for designing clinical trials?
Square Root Transformation Strategy: Difference in Areas = Difference in Radii

\[\sqrt{\text{Area}} = \sqrt{\pi r^2} = r \sqrt{\pi} \]

\[\Delta = r_2 \sqrt{\pi} - r_1 \sqrt{\pi} \]

\[\Delta = (r_2 - r_1) \sqrt{\pi} \]

- Growth rate independent of baseline size
- Test-retest measurements independent of size

Yehoshua et al. Ophthalmology, April 2011; 118: 679-686
AREDS Database: Growth of GA over 4 Years (Courtesy of Emily Chew and Rick Ferris)

Growth rate no longer depends on size

Feuer et al., JAMA Ophthalmology, Jan. 2013
AREDS Color Fundus Database: Growth of GA over 4 Years
(Courtesy of Emily Chew and Rick Ferris)

Difference in Area Measurements

Difference in the Square Root Area Measurements

Confirms size range of GA for clinical trials
Non-Circularity Index (NCI) Helps Predict Progression of GA

Definition of NCI:

Actual Area
Perimeter Area

Actual perimeter = 2\pi r_p

r_p = radius of a circle with a perimeter equal to the perimeter from the actual GA

Perimeter Area = \pi r_p^2

If the GA lesion is a circle, then the NCI = 1

Circularity Index as a Risk Factor for Progression of Geographic Atrophy

Amita Domalpally, MD,¹ Ronald P. Danis, MD,¹ James White, BME,¹ Ashwini Narkar, MS,¹ Traci Clemons, PhD,³ Fredrick Ferris, MD,² Emily Chew, MD²

Ophthalmology 2013;120:2666-2671
Non-Circularity Index (NCI) Helps Predict Progression of GA

Circularity Index as a Risk Factor for Progression of Geographic Atrophy

Amitha Domalpally, MD, Ronald P. Danis, MD, James White, BME, Ashwin Narkar, MS, Traci Clemons, PhD, Fredrick Ferris, MD, Emily Chew, MD

Ophthalmology 2013;120:2666-2671
Growth of Geographic Atrophy

- Phenotype enrichment:
 - Autofluorescence patterns (e.g. banded)
 - Bilateral vs. unilateral GA
 - Disruption/atrophy of photoreceptors at margins of GA imaged by OCT
 - Decreased retinal sensitivity by microperimetry at margins of GA
 - Low luminance deficits
 - Presence/absence of reticular pseudodrusen (subretinal drusenoid deposits) or decreased choroidal thickness
 - Delayed dark adaptation
Abnormal Anatomy and Visual Function Extends Beyond the Margin of GA

- **Histopathology:** Photoreceptor atrophy at variable distances from edge of GA

 Loss of photoreceptors 1400 μm from the edge of GA

 Intact RPE

- **Electrophysiology and microperimetry:** Photoreceptor dysfunction identified away from the edge of the GA

SD-OCT Imaging of the Outer Retina Can Show Disrupted Photoreceptors and Predict Progression of GA

- Ongoing prospective SD-OCT study
 - Eyes with GA secondary to AMD
 - Size of GA between 0.5 DA (1.8 mm²) and 7 DAs (18 mm²)
 - Followed for at least 1 year

Outer Retinal IS/OS/EZ Slab *En Face* Image

Bottom red line = 20 μm above RPE

Top red line = 40 μm above RPE
20μm thick slab containing the IS/OS/EZ boundary
20μm thick slab containing the IS/OS/EZ boundary
En Face Projection: IS/OS/EZ Region
IS/OS/EZ Slab *En Face* Image

Top red line = 40 μm above RPE

Black line = RPE

Bottom red line = 20 μm above RPE

Location of B-scan

B-scan through fovea
Case #1

Color Images

Heidelberg Autofluorescence Images

Sub-RPE Slab En Face Images (GA)

IS/OS/EZ Slab En Face Images (Focal Pattern)
Growth of GA Over 1 Year: Focal Pattern

Sub-RPE Slab
En Face Images (GA)

Baseline

6 Months

12 Months

Baseline GA

Baseline GA + Growth at 6 months

Baseline GA + Growth at 12 months
Correlation between B-Scan and Outer Retinal IS/OS/EZ Slab En Face Image

Location of B-scan

IS/OS/EZ Slab En Face Image (Focal Pattern)

B-scan Corresponding to Slab Image

Magnified IS/OS/EZ Slab En Face Image
Correlation between B-Scan and Outer Retinal IS/OS/EZ Slab En Face Image

A. Location of B-scan
B. B-scan Corresponding to Slab Image
C. Magnified IS/OS/EZ Slab En Face Image

IS/OS/EZ Slab En Face Image (Focal Pattern)
Correlation between B-Scan and Outer Retinal IS/OS/EZ Slab *En Face* Image

Location of B-scan

B-scan Corresponding to Slab Image

IS/OS/EZ Slab *En Face* Image (Focal Pattern)

Magnified IS/OS/EZ Slab *En Face* Image

Growth of IS/OS defect being used in ongoing CNTF trial in MacTel2
Loss of IS/OS/EZ Integrity Corresponds to Decreased Microperimetric Retinal Sensitivity

Loss of retinal sensitivity corresponds to perilesional area with increased autofluorescence

Growth of Geographic Atrophy

- Phenotype enrichment:
 - Autofluorescence patterns (e.g. banded)
 - Bilateral vs. unilateral GA
 - Disruption/atrophy of photoreceptors by OCT imaging at margins of GA
 - Decreased retinal sensitivity by microperimetry at margins of GA
 - Low luminance deficits
 - Presence/absence of reticular pseudodrusen (subretinal drusenoid deposits) or decreased choroidal thickness
 - Delayed dark adaptation
Low Luminance Deficit Testing

Normal Luminance
ETDRS Acuity

Low Luminance
ETDRS Acuity

Low Luminance Deficit =
Normal Luminance VA score -
Low Luminance VA Score

Sunness JS, Rubin GS, Broman A, Applegate CA, Bressler NM, Hawkins BS. Ophthalmology. 2008 Sep;115(9):1480-8

2.0-log unit neutral density filter (filter lowers luminance by 100-fold), Kodak Wratten filter; Kodak, Rochester, NY
COMPLETE Study: Geographic atrophy
Low Luminance Deficit Predicts Growth Rate

Non-central GA with VA ≥ 20/60

(Pearson correlation r=0.38, p=0.007)
Growth of Geographic Atrophy

- Phenotype enrichment:
 - Autofluorescence patterns (e.g. banded)
 - Bilateral vs. unilateral GA
 - Disruption/atrophy of photoreceptors by OCT imaging at margins of GA
 - Decreased retinal sensitivity by microperimetry at margins of GA
 - Low luminance deficits
 - Presence/absence of reticular pseudodrusen (subretinal drusenoid deposits) or decreased choroidal thickness
 - Delayed dark adaptation
Phenotype Enrichment Depends on The Surrogate Endpoint

- Surrogate anatomic endpoints:
 - Growth of geographic atrophy (color, autofluorescence, or OCT en face imaging)
 - Progression to neovascular AMD
 - Change in drusen area and/or volume
 - Progression from drusen to GA (in AREDS, 95% of GA had drusen)
 - Progression of AREDS severity scale
 - Changes in retinal/RPE/choroidal anatomy using a variety of imaging strategies
Anecortave Acetate Risk Reduction Trial (Alcon Research. Ltd/Novartis)

- Prevent progression from high-risk intermediate AMD (soft drusen, pigment hyperplasia within 3000μm) to wet AMD
- Wet AMD in fellow eye
- Incidence of sight-threatening CNV in 4 years estimated at 33%

Anecortave Acetate Risk Reduction Trial
(Alcon Research. Ltd/Novartis)

• 2596 patients enrolled worldwide
• At Month 48:
 – Estimated 80% power to detect a 30% reduction in CNV
 – Estimated 92% power to detect a 35% reduction in CNV
• After interim analysis at 2 years, study stopped, never published
• Successful enrollment proves feasibility of this surrogate study design

Phenotype Enrichment Depends on The Surrogate Endpoint

- Surrogate anatomic endpoints:
 - Growth of geographic atrophy (color, autofluorescence, or OCT en face imaging)
 - Progression to neovascular AMD
 - Change in drusen area and/or volume
 - Progression from drusen to GA (in AREDS, 95% of GA had drusen)
 - Progression of AREDS severity scale
 - Changes in retinal/RPE/choroidal anatomy using a variety of imaging strategies
9 studies, 2216 subjects randomized
No evidence that disappearance of drusen reduced risk of developing CNV, GA or visual acuity loss
Cirrus SD-OCT Measurement of Drusen using the 200 X 200 Raster Scan Pattern: 6mm X 6mm

40,000 A-scans
Equal distances between A-scans and B-scans
Cirrus SD-OCT Fundus Scanning Pattern
200 X 200 A-scans (6mm X 6mm)

200 X 200 raster scan measures 6mm X 6 mm on the macula
Segmentation Algorithms
Segmentation Algorithms

Also available on the Topcon SDOCT instrument
Measuring RPE Elevations: Subtract “RPE Floor” from “RPE Elevations”
Drusen: Volume and Area Measurements

Area: 5.21 mm²
Volume: 0.899 mm³

RPE Segmentation

Zeiss Cirrus SDOCT, Ver. 6.0 software
Reproducibility of Drusen Measurements

- 103 eyes from 74 patient
- 5 separate SD-OCT scans at the same visit
- Highly reproducible

Mean Area = 3.49mm² (SD=0.04) Mean Volume = 0.202mm³ (SD=0.002)
Natural History of Drusen in the Absence of Any Geographic Atrophy Using SDOCT Imaging

- 143 eyes
- Followed up to 24 months
- Different progression patterns observed
 - Increase: 48%/yr
 - Stable: 40%/yr
 - Decrease: 12%/yr

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441
Natural History of Drusen in the Absence of Any Geographic Atrophy Using SDOCT Imaging

• 143 eyes
• Followed up to 24 months
• Different progression patterns observed
 - Increase: 48%/yr
 - Stable: 40%/yr
 - Decrease: 12%/yr

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441
Increase in Drusen Area and Volume: 48%/yr

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441
Decrease in Drusen Area and Volume:
3 Possible Outcomes

- Formation of geographic atrophy
- Formation of CNV
- No significant anatomic abnormality identified

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441
Decrease in Drusen Area and Volume with Formation of GA: 4.5%/yr

<table>
<thead>
<tr>
<th>Color</th>
<th>Autofluorescence</th>
<th>OCT B-Scan</th>
<th>RPE Map</th>
<th>Hybrid Drusen Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area: 3.75 mm²</td>
<td>Vol: 0.456 mm³</td>
<td>VA: 20/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area: 0.55 mm²</td>
<td>Vol: 0.016 mm³</td>
<td>VA: 20/63</td>
<td>GA Area: 1.28 mm²</td>
<td></td>
</tr>
</tbody>
</table>

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441
Decrease in Drusen Area and Volume with Formation of CNV: 3.5%/yr

<table>
<thead>
<tr>
<th>Color</th>
<th>OCT B-Scan</th>
<th>RPE Map</th>
<th>Hybrid Drusen Map</th>
</tr>
</thead>
</table>
| **Baseline**| ![OCT image](image1) | ![RPE image](image2) | ![Drusen map](image3) | Area: 2.56mm²
Vol: 0.181mm³ |
| **Month 12**| ![OCT image](image4) | ![RPE image](image5) | ![Drusen map](image6) | Drusen & CNV
Area: 2.41mm²
Vol: 0.100mm³ |

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441
Decrease in Drusen Volume > 50%
Without Formation of GA or CNV: 4%/yr

<table>
<thead>
<tr>
<th>Color</th>
<th>OCT B-Scan</th>
<th>RPE Map</th>
<th>Hybrid Drusen Map</th>
</tr>
</thead>
</table>
| Baseline | ![Baseline OCT B-Scan](image1) | ![Baseline RPE Map](image2) | ![Baseline Hybrid Drusen Map](image3) | Area: 3.03mm²
Vol: 0.222mm³ |
| Month 6 | ![Month 6 OCT B-Scan](image4) | ![Month 6 RPE Map](image5) | ![Month 6 Hybrid Drusen Map](image6) | Area: 0.032mm²
Vol: 0 mm³ |
| Month 12 | ![Month 12 OCT B-Scan](image7) | ![Month 12 RPE Map](image8) | ![Month 12 Hybrid Drusen Map](image9) | Area: 0.03 mm²
Vol: 0 mm³ |

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441
Placement of 3 mm and 5 mm Diameter Circles Centered on the Fovea

Automatic algorithm registers the OCT fundus image with color fundus image

Placement of 3 mm and 5 mm Diameter Circles Centered on the Fovea

Automatic algorithm registers the OCT fundus image with color fundus image

Placement of 3 mm and 5 mm Diameter Circles Centered on the Fovea

Automatic algorithm registers the OCT fundus image with color fundus image

Quantification of Drusen with the 3 mm and 5 mm Diameter Circles Centered on the Fovea

Decrease in Drusen Volume > 50% Without Formation of GA or CNV as a Clinical Trial Endpoint

Natural History of Drusen Morphology in Age-Related Macular Degeneration Using Spectral Domain Optical Coherence Tomography

Yehoshua et al., 2011, Ophthalmology 118(12): 2434-2441

Table 7. Sample Size Table for Comparing Successful Outcomes in Treatment and Control Groups Depending on the Presumed Percent Treatment Success* and the Percent Power of a Study to Detect a Positive Outcome if One Exists

<table>
<thead>
<tr>
<th>Ratio of Experimental to Control Randomized Eyes</th>
<th>Percent with Successful Outcomes in Control Group</th>
<th>Number of Eyes Needed in Each Group Based on the Anticipated Percent with Successful Outcomes* and the Desired Power to Detect the Outcome†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>5%</td>
<td>80% Power 90% Power 18:18 23:23 59:59 75:75</td>
</tr>
<tr>
<td>2:1</td>
<td>5%</td>
<td>80% Power 90% Power 28:14 34:17 92:46 116:58</td>
</tr>
</tbody>
</table>

* A successful outcome was defined as shrinkage to <50% of baseline cube root volume without progression to geographic atrophy or neovascular disease.
† The number of eyes needed in each group was the same whether the follow-up interval was 6 or 12 months.
Phase II Eculizumab Study
Bascom Palmer Eye Institute

Inclusion:
High Risk Drusen
OR
Geographic Atrophy

Drusen Cohort
$N = 30$
2:1 Randomization

Eculizumab/Placebo
26 weeks

GA Cohort
$N = 30$
2:1 Randomization

Follow-up through one year

ClinicalTrials.gov Identifier: NCT0093588
Phase II Eculizumab Study: Bascom Palmer Eye Institute

Drusen Cohort
\(N = 30 \)

Visual Acuity: 20/63 or better
Drusen Volume \(\geq 0.030 \text{ mm}^3 \)
No evidence of GA
Can Eculizumab Decrease Drusen Volume > 50% Without Formation of GA or CNV as a Clinical Trial Endpoint?

Change in Drusen Volume as a Novel Clinical Trial Endpoint for the Study of Complement Inhibition in Age-related Macular Degeneration

Carlos Alexandre de Amorim Garcia Filho, MD; Zohar Yehoshua, MD, MHA; Giovanni Gregori, PhD; Renata Portella Nunes, MD; Fernando M. Penha, MD, PhD; Andrew A. Moshfeghi, MD, MBA; Kang Zhang, MD, PhD; William Feuer, MS; Philip J. Rosenfeld, MD, PhD

Garcia et al., 2014, OSLI-RETINA, January/February Vol.45, No. 1
COMPLETE Study: Drusen Outcomes

Drusen Volume Change at 26 Weeks

- Study + fellow eyes (n=37)
- Two eyes showing decreased volume were placebo treated
- Two eyes developing CNV were placebo treated
- Active vs placebo for drusen: p=0.15
- Outcome effectively ruled out a 22% or greater success rate for reducing drusen volume
 - based on the 95% confidence interval between treatment groups

50% decrease in drusen volume over 26 weeks
COMPLETE Study: Change in Drusen Volume Over 52 weeks

Week 26 Outcome

- Two eyes showing decreased volume were placebo treated
- Two eyes developing CNV were placebo treated

Week 52 Outcome

- 50% decrease in drusen volume over 26 weeks
- 50% decrease in drusen volume over 52 weeks

- Change in drusen volumes over 26 and 52 weeks consistent with natural history data
Increase in Drusen Volume

Baseline

Week 26

Week 52
COMPLETE Study: Drusen Examples

Decrease in Drusen Volume

Baseline: LLD 10
- VA 20/16 (92 letters)
- Vol = 0.2 mm³

Week 12: LLD 14
- VA 20/16 (90 letters)
- Vol = 0.009 mm³

Week 26: LLD 13
- VA 20/16 (94 letters)
- Vol = 0.005 mm³

Week 52: LLD 13
- VA 20/16 (91 letters)
- Vol = 0.006 mm³
COMPLETE Study: Drusen Examples

Conversion to CNV

Baseline
LLD 16
20/40 (72 letters)

Week 24
LLD 22
20/40 (69 letters)

Week 26
20/40 (73 letters)

Week 52
LLD 14
20/32 (75 letters)

2 placebo eyes developed CNV (p=0.13)
Drusen Cohort: Primary Study Question

- Drusen Cohort
 - Biostatistician: “Trial is a success”
 - But, drug failed to meet primary endpoint
• In drusen-only eyes:
 - Growth is more common than regression
 - Growth leads to GA
 - Growth leads to CNV
 - Perhaps, a composite endpoint is best
In drusen-only eyes, failure defined as:
- Growth of drusen volume/area
- Formation of CNV
- Conversion of drusen to GA
Goal of therapy = Prevent failure
- Prevent growth of drusen volume/area
- Prevent formation of CNV
- Prevent conversion of drusen to GA
Normal (placebo) failure rate is 60%
Based on natural history data, which was validated in the COMPLETE Study:
- For a study with 90% power
- to detect a 50% reduction in failure rate
- only 62 pts. needed per treatment arm

Why study drusen progression rather than enlargement of GA?
Drusen Progression as an Endpoint

- Earlier stage disease than GA
- Treat earlier and preserve more vision
- Better defined population than GA?
- May be at a stage influenced more broadly by therapies (e.g. complement inhibition)
- Could prevent progression to CNV
- If treatment slows growth of GA, would it necessarily be effective in slowing progression of drusen to GA?
- Could open possibility of treating even earlier based on genetics plus phenotype
Important Take-Home Messages

- Phenotype enrichment depends on endpoint
- Growth of GA is the most commonly used surrogate endpoint for dry AMD trials
- Enrichment strategies include hyper-AF patterns, size, complexity, and genetics
- Limitations of GA include analysis of growth rate and its late stage (too late?)
- Surrogate endpoints using earlier stages (e.g. drusen) attractive for Phase 2 studies
Possible Future Scenarios

• Treatment successfully slows or stops the progression of GA
 - What’s the labeled indication?
 - When will treatment be initiated?
 - Will early treatment prevent progression to GA or CNV?

• Treatment fails to slow or stop GA
 - Could treatment have prevented the progression to GA or formation of CNV?
 - If so, then goal would be to treat as early as possible