Developing Treatments for Dry Age-related Macular Degeneration – Workshop

Anatomical Endpoints

Cynthia A. Toth, M.D.
Department of Ophthalmology, Duke University Medical Center, Durham, NC
Department of Biomedical Engineering, Duke University, Durham, NC
I have the following financial relationships to disclose:

• Research Support through my University from National Eye Institute, Genentech, Bioptigen, The Hartwell Foundation, Research to Prevent Blindness, The Arnold and Mabel Beckman Foundation
• Royalties through my University from Alcon for surgical technologies
• Patents pending in image processing and OCT

Duke University has a financial interest in Bioptigen
Recording Anatomical endpoints

- **GA:** a sharply demarcated area of apparent absence of RPE, with visible choroidal vessels

 Sarks SH. Br J Ophthalmol 1976
 Sarks JP et al Eye 1988
 AREDS Report #26 Arch Ophthalmol 2009

- **Histopathology/biopsy:**
 - Not feasible

- **In vivo imaging:**
 - Retinal photographs
 - Multi-spectral imaging, visible and infrared
 - Wide field imaging
 - Fluorescein angiography
 - Fundus autofluorescence
 - Optical Coherence Tomography
Imaging Anatomical endpoints

• Different methods
 – Often complementary
 – Strengths and weaknesses

• Extract qualitative and quantitative data extraction

• Involvement of foveal center as endpoint

• Influence of history or genotype
• Classical endpoint
• Used in multiple trials
• Impact of cataract on image

Sunness et al IOVS 1999
Sunness et al Ophthalmol 1999
Sunness et al Ophthalmol 2007
Fluorescein Angiography

- Requires Intravenous injection
- Useful in examination for leakage

Mid AV phase
Late
- **Blue**
 - Excitation at 488 nm: optically pumped solid-state laser
 - Emission 500 – 700 nm with a barrier filter

- **Green**
 - Excitation at 514 nm
 - Wolf-Schnurrbusch IOVS 2011

- **Infrared**
 - Excitation at 787 nm
 - Keilhauer and Delori IOVS 2006
Quantitative assessment of GA
Wide-field autofluorescence
GA with drusen regression
Foveal Center

- Difficult to assess on CFP
 - Sunness et al IOVS 1999
 - Sunness et al Ophthalmol 1999
 - Sunness et al Ophthalmol 2007

- Blue light FAF

- Green light FAF does not have a dark central spot
 - Wolf-Schnurrbusch et al IOVS 2011

- Near IR FAF, bright macula
Optical coherence tomography-based
Retinal and choroidal morphology in GA

Loss of:
• Outer plexiform layer
• Henle’s fiber layer
• Photoreceptor nuclei
• External limiting membrane
• Ellipsoid zone (inner segment)
• Interdigitation zone
• Retinal pigment epithelium

Gain of:
• Reflectance signal into choroid and sclera

Outer Retinal Tubulation (ORT)

Reticular drusen
Optical coherence tomography
Segmentation of critical layers
• SDOCT to measure GA
 – Yehoshua et al IOVS 2013
 – Simader C et al AJO 2014
- Quantitative assessment of drusen volumes and atrophy over time

OCT findings precede atrophy

Nathoo et al AJO 2014
Folgar et al ARVO 2013
Wu Z et al Ophthalmol 2014
GA on OCT versus Autofluorescence

- SDOCT vs FAF
 - Sayegh et al Ophthalmol 2011
 - Hu et al IOVS 2013
 - Simader C et al AJO 2014
On OCT imaging:

hyporeflective drusen in eyes with GA

Leuschen et al *Ophthalmology* 2013
On OCT imaging: Hyporeflective wedge-shaped retinal bands precede GA

Wu Z et al Ophthalmology 2014
Vitelliform lesion resulting in GA

85 yo F
Geographic Atrophy in the antiVEGF era

Comparisons of AMD Treatments Trials
Comparisons of AMD Treatments Trials
Geographic Atrophy in the antiVEGF era

Baseline

Year 1

Year 2
Anatomic endpoints from imaging
Imaging Anatomical endpoints

- Different methods
 - Often complementary
 - Strengths and weaknesses
- Extract qualitative and quantitative data extraction
- Involvement of foveal center as endpoint
- Influence of history or genotype
- Different if the endpoint is onset of atrophy or progression of atrophy