Neuroscience Therapeutics Development: Current State And Challenges

David Michelson
Vice President and Therapeutic Area Head, Clinical Neuroscience
Merck Research Laboratories
Disclosure: I am an employee of Merck
Finding New Drugs Is Difficult

• In many disorders with unmet medical need,
 – Our understanding of disease biology is incomplete, making it difficult to choose targets that result in effective drugs
 – Even when disease is better understood, finding targets that reliably move biology can be challenging (e.g. tau, α-synuclein)
Background

• In many disorders with unmet medical need,
 – Our understanding of disease biology is incomplete, making it difficult to choose targets that result in effective drugs
 – Even when disease is better understood, finding targets that reliably move biology can be challenging (e.g. tau, a-synuclein)

• Compared with other disease areas, CNS disorders have been relatively less tractable to finding new treatments as measured by success rates:
 – From 1995 to 2007 the proportion of all new CNS drugs with a first in human dose that ultimately received regulatory approval was 6.2%\(^1\)
 – Benchmarking data suggest that CNS (neurology/psychiatry/pain) success rates are among the lowest of the major therapeutic areas
 – As many new drugs are iterative (e.g. 2\(^{nd}\) or 3\(^{rd}\) in class, etc.), the success rates for truly novel (‘unprecedented’) mechanisms may be overstated
 – In recent years, many companies previously active in developing novel CNS drugs have exited the area, despite the large unmet medical need that remains

\(^1\)Tufts Center for the Study of Drug Development, Impact Report, Volume 16, November/December 2014
The Challenge

To serve patients well and increase the flow of needed drugs, we will need more efficient discovery and development methods, and improved success rates.

The focus today is to explore and discuss paths toward this goal.
The Path To A Drug

- Target Identification
- Lead Identification
- Lead Optimization
- Candidate Selection

- First In Human
- Proof of Concept
- Confirmation
The Path To A Drug

Validated By:
- Genetics
- Pathophysiology
- Human Pharmacology
- Animal Models
- Other

Target Identification
Validated Targets

• A biological drug target is validated to the degree that there is evidence that perturbation of the target in a specified way will alter a disease state in a desired manner
Validated Targets

• A biological drug target is validated to the degree that there is evidence that perturbation of the target in a specified way will alter a disease state in a desired manner

• Deciding whether a target is validated, and to what degree, inherently requires judgments about the strength and predictivity of the data serving as evidence, and those judgments can—and typically do—vary amongst individuals
Validated Targets

• A biological drug target is validated to the degree that there is evidence that perturbation of the target in a specified way will alter a disease state in a desired manner.

• Deciding whether a target is validated, and to what degree, inherently requires judgments about the strength and predictivity of the data serving as evidence, and those judgments can—and typically do—vary amongst individuals.

• Target validation can come from a number of different sources—genetics, pathophysiology, animal models, clinical observation, etc.
Validated Targets

- A biological drug target is validated to the degree that there is evidence that perturbation of the target in a specified way will alter a disease state in a desired manner.

- Deciding whether a target is validated, and to what degree, inherently requires judgments about the strength and predictivity of the data serving as evidence, and those judgments can—and typically do—vary amongst individuals.

- Target validation can come from a number of different sources—genetics, pathophysiology, clinical observation, animal models, etc.

- The limitations of animal models have been increasingly recognized, and emphasis is shifting towards validating targets with human data.
The Path To A Drug

Target Identification

Lead Identification
Identify chemical structures with the potential to modulate the pharmacological target

Lead Optimization

Candidate Selection

First In Human
Proof of Concept
Confirmation
The Path To A Drug

1. Target Identification
2. Lead Identification
3. Lead Optimization
 - Explore and optimize pharmacology, drug characteristics and toxicology/safety in vitro and in animals
4. Candidate Selection
5. First In Human
 - Proof of Concept
 - Confirmation
The Path To A Drug

1. Target Identification
2. Lead Identification
3. Lead Optimization
4. Candidate Selection

GLP toxicology and other work required to enable human studies

First In Human
Proof of Concept
Confirmation
The Path To A Drug

- Target Identification
- Lead Identification
- Lead Optimization
- Candidate Selection
- First In Human
 - Proof of Concept
 - Confirmation
Animal Models Are Important During Lead Optimization
Animal Models Are Important During Lead Optimization

- Animal models provide a highly predictive means to assess the expected safety and metabolic profile in humans.
Animal Models Are Important During Lead Optimization

- Animal models provide a highly predictive means to assess the expected safety and metabolic profile in humans.
- Drug pharmacology can be explored and deconstructed in animals in ways not possible in humans.

Lead Optimization
Animal Models Are Important During Lead Optimization

- Animal models provide a highly predictive means to assess the expected safety and metabolic profile in humans

- Drug pharmacology can be explored and deconstructed in animals in ways not possible in humans

- Animal models often can usefully explore whether a given pharmacology can effect desired biological changes
Animal Models As Predictors Of Efficacy

- In some instances, animal models can predict efficacy, notably for behaviors whose physiology is conserved across species (e.g. sleep)
In some instances, animal models can predict efficacy, notably for behaviors whose physiology is conserved across species (e.g. sleep).

However, this is the exception rather than the rule...
In some instances, animal models can predict efficacy, notably for behaviors whose physiology is conserved across species (e.g. sleep).

However, this is the exception rather than the rule... Many of the most important and most common disorders of the human CNS do not occur in animals, and, in general, animal models that attempt to replicate CNS disorders or behavioral syndromes have been poor predictors of efficacy in humans.
In some instances, animal models can predict efficacy, notably for behaviors whose physiology is conserved across species (e.g. sleep), or relative to a particular pharmacological aspect of a disorder.

However, this is the exception rather than the rule... Many of the most important and most common disorders of the human CNS do not occur in animals, and, in general, animal models that attempt to replicate CNS disorders or behavioral syndromes have been poor predictors of efficacy in humans.

Thus better approaches and paradigms are needed.
The Most Common Reason For Failure Is Inefficacy:
The Drug Candidate Does Not Demonstrate The Desired Therapeutic Benefit

Efficacy issues leading to failure dominated for certain therapeutic classes

Therapeutic Classes with Relatively High Efficacy Failure Shares

For investigational drugs that first entered clinical testing in 2000-09, more than half of the respiratory and antineoplastic indications (54.3% and 53.3%, respectively) that failed did so primarily for efficacy reasons.

Source: Tufts Center for the Study of Drug Development
Potential ‘Levers’ To Encourage Increased Efforts To Find And Develop New CNS Therapeutics

Reduce the burden of failure
Potential ‘Levers’ To Encourage Increased Efforts To Find And Develop New CNS Therapeutics

- Reduce the burden of failure
 - Primarily a clinical strategy, and does not rely on improved success rates
Reduce the burden of failure

• Primarily a clinical strategy, and does not rely on improved success rates
 – Earlier, more efficient studies reliably predictive of clinical outcome reduce the number of failed late stage studies
Potential ‘Levers’ To Encourage Increased Efforts To Find And Develop New CNS Therapeutics

Reduce the burden of failure

• Primarily a clinical strategy, and does not rely on improved success rates
 – Earlier, more efficient studies reliably predictive of clinical outcome reduce the number of failed late stage studies
 – In theory, allows more ‘shots on goal’ with constant success rates, producing more drugs
Potential ‘Levers’ To Encourage Increased Efforts To Find And Develop New CNS Therapeutics

Reduce the burden of failure

- Primarily a clinical strategy, and does not rely on improved success rates
 - Earlier, more efficient studies reliably predictive of clinical outcome reduce the number of failed late stage studies
 - In theory, allows more ‘shots on goal’ with constant success rates, producing more drugs

Increase the probability of success

- Success rates improve
Potential ‘Levers’ To Encourage Increased Efforts To Find And Develop New CNS Therapeutics

Reduce the burden of failure

- Primarily a clinical strategy, and does not rely on improved success rates
 - Earlier, more efficient studies reliably predictive of clinical outcome reduce the number of failed late stage studies
 - In theory, allows more ‘shots on goal’ with constant success rates, producing more drugs

Increase the probability of success

- Success rates improve
- Clinical opportunities to decrease false negatives
 - Better dose selection
 - Better signal detection
Potential ‘Levers’ To Encourage Increased Efforts To Find And Develop New CNS Therapeutics

Reduce the burden of failure

- Primarily a clinical strategy, and does not rely on improved success rates
 - Earlier, more efficient studies reliably predictive of clinical outcome reduce the number of failed late stage studies
 - In theory, allows more ‘shots on goal’ with constant success rates, producing more drugs

Increase the probability of success

- Success rates improve
- Clinical opportunities to decrease false negatives
 - Better dose selection
 - Better signal detection
- Better target selection
 - New strategies
To encourage increased efforts to find and develop new CNS therapeutics there are several potential ‘levers’

- Primarily a clinical strategy, and does not rely on improved success rates
 - Earlier, more efficient studies reliably predictive of clinical outcome reduce the number of failed late stage studies
 - In theory, allows more ‘shots on goal’ with constant success rates, producing more drugs

- Success rates improve
- Clinical opportunities to decrease false negatives
 - Better dose selection
 - Better signal detection
- Better target selection
 - New strategies

Today’s Focus