LRRK2 KINASE INHIBITORS: THE PATH TO THE CLINIC

The Michael J. Fox Foundation
Today one million people in the United States and more than five million worldwide live with Parkinson’s. Those numbers will only grow as our population ages.
LRRK2 kinase inhibitors are currently a leading strategy for Parkinson’s disease modification among multiple companies and academic centers.
KINASES ARE DRUGGABLE!

Guaitoli et al., 2016 PNAS

Jeffrey et al., 1995

Figure 3:

Guaitoli et al., 2016 PNAS
MJFF has made significant investments in translating LRRK2 into therapies for Parkinson’s patients.
LRRK2 SUBSTRATE IDENTIFICATION
LRRK2 SUBSTRATE (RAB10) DISCOVERED!

Steger et al, Elife, 2016
LRRK2 SAFETY INITIATIVE
GNE7915 Induces Abnormal Accumulation of Lamellar Bodies in NHP Type II Pneumocytes and Reduces Urine di-22:6-BMP

Pulmonary abnormality resembles the phenotype of LRRK2 KO rodents, suggesting this is LRRK2-mediated rather than an off-target effect.

Fuji et al., 2015
MJFF established an unprecedented collaboration of major drug makers willing to collaborate to address key questions about the safety of LRRK2 kinase inhibitors.
AIM2: PULMONARY FUNCTIONAL STUDY WITH MLI-2 LRRK2 KINASE INHIBITOR

- **Baseline**
 - Baseline PFT
 - Initiate drug dosing and blood collection
 - Functional Observational Battery (FOB) in home cage and chair restraint

- **Week 1**
 - Day 7 PFT
 - Continue drug dosing and blood collection
 - FOB in home cage and chair restraint

- **Week 2**
 - Day 15 PFT
 - Euthanize animals (4/group) for postmortem analyses
 - FOB in home cage and chair restraint

- **Week 4**
 - Day 28 PFT
 - Euthanize animals (4/group) for postmortem analyses
 - Remaining animals available for additional studies

- **Pulmonary Function Testing (PFT)**
 - Lung diffusion capacity for carbon monoxide (DLCO)
 - Quasi-static lung compliance (Cqs10)
 - Forced vital capacity (FVC)

- **Bronchoaveolar Lavage**
 - Surfactant
LRRK2 SAFETY SUMMARY

• Three distinct LRRK2 kinase inhibitors produced the previously reported lung histopathology (mild accumulation of lamellar bodies in type II pneumocytes) in NHPs - confirming an on-target lung effect.

 • No morphologic effects were seen with any LRRK2 inhibitor in brain or kidney.
 • GNE7915 effects on lung were reversed after 14d washout.

• Other LRRK2 kinase inhibitors induced lung histologic effects only at high doses, despite both low and high dose groups substantially decreasing LRRK2 activity by an pS935 PK/PD readout.

• MLi-2 effects on lung histology were not associated with functionally significant alterations in any pulmonary functional endpoint examined.

• Overall, these data suggest that the on target morphological changes observed in the lungs of LRRK2 kinase inhibitor treated NHPs may not prevent the clinical evaluation of the therapeutic potential of LRRK2 kinase inhibitors in PD.
LRRK2 COHORT IDENTIFICATION
OBSERVATIONAL STUDIES OF LRRK2 COHORTS

Cohorts cover a spectrum of characterization

Registry – minimal characterization
- Both virtual and clinic-based registries
 - Limited clinic visits (1-2 years)
 - Virtual self-reported data
- Centrally verified genotype
- Recruitment ongoing

Moderate characterization – biomarker resource
- Leveraging researcher with existing cohorts
- Cross-sectional dataset
- Clinician confirmed diagnosis
- Biospecimen and data available as open resource

Robust characterization
- Intensive longitudinal follow-up
- Biospecimen, imaging, neuropsych assessments, etc.
- Centrally verified genotype
- Recruitment ongoing
MJFF LRRK2 DATA AND SPECIMEN RESOURCES

<table>
<thead>
<tr>
<th>Cohort</th>
<th>iPD</th>
<th>LRRK2+ PD</th>
<th>LRRK2+ Carriers</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson’s Progression Markers Initiative (PPMI) Genetic Cohort</td>
<td></td>
<td>92</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>PPMI Genetic Registry</td>
<td></td>
<td>112</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>LRRK2 Cohort Consortium (LCC) Cross-Sectional Study (clinical data and samples)</td>
<td>70</td>
<td>170</td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>LCC Cross-Sectional Study (clinical data only)</td>
<td>720</td>
<td>750</td>
<td>660</td>
<td>300</td>
</tr>
<tr>
<td>LCC Ashkenazi Jewish (AJ) Longitudinal Study</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>LCC 23andMe Blood Collection Study (Limited clinical data)</td>
<td>20</td>
<td>52</td>
<td>152</td>
<td>18</td>
</tr>
<tr>
<td>LRRK2 Biobanking Initiative</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Please note: The only clinical data available from 23andMe subjects are demographics (year of birth, gender, education, race, PD status, age at diagnosis, age at onset), LRRK2 status, limited family history, UPDRS Part II (excluding question 13), UPDRS Part IV (questions 5, 6, 8, and 11 only), UPSIT, and limited information on anti-inflammatory medications and head injury or concussion.
MJFF LRRK2 DATA AND SPECIMEN AVAILABILITY

Number of LRRK2 Carriers with Biospecimen Available at Baseline

<table>
<thead>
<tr>
<th>Cohort</th>
<th>DNA</th>
<th>RNA</th>
<th>CSF</th>
<th>Whole blood</th>
<th>Plasma</th>
<th>Serum</th>
<th>Urine</th>
<th>Cell Lines</th>
<th>PBMCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPMI Genetic Cohort</td>
<td>74</td>
<td>169</td>
<td>151</td>
<td>167</td>
<td>166</td>
<td>168</td>
<td>166</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>PPMI Genetic Registry</td>
<td>155</td>
<td>204</td>
<td>204</td>
<td>204</td>
<td>204</td>
<td>204</td>
<td>196</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>296</td>
<td>69</td>
<td>336</td>
<td>322</td>
<td>256</td>
<td>259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRRK2 Biobanking Initiative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
AS MORE DRUGS MAKE IT TO TRIALS, NEED FOR PD BIOMARKERS GROWS

Parkinson’s Progression Markers Initiative

» Three study arms with different cohorts:
 – Recently diagnosed PD and controls: Completed enrollment in 2014
 – Risk factors of smell loss and RBD: Completed enrollment in 2015
 – People with genetic mutations, with or without PD: Recruiting

» CSF, blood, urine, DNA, RNA, iPSCs

» Learning more about how biology correlates to clinical experience

All data is made available at www/ppmi-info.org
Acknowledgements

Genentech
Reina Fuji
Anthony Estrada*
Xingrong Liu

Pfizer
Warren Hirst#
Paul Galatsis
Christopher Houle
Stefan Steyn
Sakshi Bhargava
Yi Chen
Elie Needle

Merck
Matthew Fell
Matthew Kennedy
Michael Ellis
Carrie Markgraf
Hong Mei
Dianne Bryce
Sue Hill
Matthew Maddess
Zhizhang Yin
Honghsi Yu

Others
Dario Alessi - Dundee
Ken Marek - IND
Allastair Reith – GSK
Tatiana Foroud – Indiana
Kalpana Merchant
Brian Fiske – MJFF
Marco Baptista-MJFF
Matthias Mann – Max Planck

*Currently at Denali
#Currently at Biogen