Novel Methods to Identify Pain Targets: Genomic/Genetic Approaches

Luda Diatchenko, MD, PhD
Canada Excellence Research Chair in Human Pain Genetics
Alan Edwards Centre for Research on Pain,
McGill University, Montreal, Canada

The National Academies of SCIENCE ENGINEERING MEDICINE
Advancing Therapeutic Development for Pain and Opioid Use Disorders through Public-Private Partnerships: A Workshop
Washington, DC, October 11–12, 2017
Translation of Genetic Information into Clinical Practice

- Associated variants
 - Novel biological insights
 - Clinical applications
 - Therapeutic targets
 - Biomarkers
 - Prevention
 - Measures for improved treatment
 - Personalized medicine
 - Diagnostics
 - Prognostics
 - Therapeutic optimization

How are genomes of individuals different?

DNA contains 99.9% of identical sequence in all the individuals with only 0.1% difference. Out of this 0.1% variation, over 80% are single nucleotide polymorphisms (SNPs).
Genes Responsible for Monogenic Pain Disorders

<table>
<thead>
<tr>
<th>Type</th>
<th>Gene</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSN Type I</td>
<td>SPTLC1</td>
<td>sphingolipid synthesis</td>
</tr>
<tr>
<td>HSN Type II</td>
<td>HSN2</td>
<td>(function unknown)</td>
</tr>
<tr>
<td>HSN Type IID</td>
<td>SCN9A</td>
<td>sodium (Nav1.7) channel</td>
</tr>
<tr>
<td>HSN Type III</td>
<td>IKBKAP</td>
<td>transcription factor</td>
</tr>
<tr>
<td>HSN Type IV</td>
<td>NTRK1</td>
<td>neurotrophin receptor</td>
</tr>
<tr>
<td>HSN Type V</td>
<td>NGFB</td>
<td>neurotrophin</td>
</tr>
<tr>
<td>HSN Type ?</td>
<td>SCN11A</td>
<td>sodium (Nav1.9) channel</td>
</tr>
<tr>
<td>FEPS</td>
<td>TRPA1</td>
<td>cation (TRPA1) channel</td>
</tr>
<tr>
<td>PE</td>
<td>SCN9A</td>
<td>sodium (Nav1.7) channel</td>
</tr>
<tr>
<td>PEPD</td>
<td>SCN9A</td>
<td>sodium (Nav1.7) channel</td>
</tr>
<tr>
<td>FHM Type I</td>
<td>CACNA1A1</td>
<td>calcium channel subunit</td>
</tr>
<tr>
<td>FHM Type II</td>
<td>ATP1A2</td>
<td>ion pump subunit</td>
</tr>
<tr>
<td>FHM Type III</td>
<td>SCN1A</td>
<td>sodium (Nav1.1) channel</td>
</tr>
</tbody>
</table>

“**The Human Pincushion** (congenital insensitivity to pain with anhidrosis; HSN Type IV)

FEPS: familial episodic pain syndrome; HSN: hereditary sensory neuropathy; PE: primary erythromelalgia; PEPD: paroxysmal extreme pain disorder; FHM: familial hereditary migraine

Courtesy from Dr. Mogil
Drug Development Based on Monogenic Pan Disorders -

Anti-NGF attenuates knee pain while walking in osteoarthritis patients

Mantyh et al., Anesthesiology, 2011
Drug Development Based on Monogenic Pan Disorders – Sodium Channel blockers

Active compounds
- AstraZeneca
- Bayer
- Eli Lilly
- Janssen
- Johnson & Johnson
- Novartis
- Others

Preclinical
- Renovis-Pfizer
 - Sanofi-Aventis
 - SAR-115740

Phase I
- Amgen
 - AMG517

- Abbott
 - ABT102

Phase II
- Glenmark
 - GRC 6211

- GSK
 - SB-705498

Phase III
- Merck-Neurogen
 - MK-2295
Common Persistent Pain Conditions

- High Psychological Distress
 - Mood
 - Anxiety
 - Depression
 - Stress Response
 - Somatization
- High State of Pain Amplification
 - Tissue Injury
 - Blood Pressure
 - Impaired Pain Regulatory Systems
 - Pro-inflammatory State

Development of Pain Genetics Field

Questioning genetic component of human pain

Single gene association studies

COMT

OPRM1

Genome-wide analysis

Needs for integration of multiple genome-wide datasets

2000

2017

We are here
To create a database that aggregates relevant and up-to-date human pain genetics data and complementary resources in one centralized location to be used as a resource for clinicians and pain researchers.

<table>
<thead>
<tr>
<th>Loci</th>
<th>Variants</th>
<th>Alleles</th>
<th>Direction</th>
<th>Phenotype</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>C</td>
<td></td>
<td>Analgesia</td>
<td>Campa 2008</td>
</tr>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>T/T</td>
<td></td>
<td>Analgesia</td>
<td>Gandioti 2013</td>
</tr>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>T</td>
<td></td>
<td>Analgesia</td>
<td>Zwisler 2010</td>
</tr>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>T/T</td>
<td></td>
<td>Post-operative Pain</td>
<td>Slia 2010</td>
</tr>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>T/T</td>
<td></td>
<td>Analgesia</td>
<td>Rhodin 2013</td>
</tr>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>C/C</td>
<td></td>
<td>Post-operative Pain</td>
<td>Mamie 2013</td>
</tr>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>C</td>
<td></td>
<td>Post-operative Pain</td>
<td>Mamie 2013</td>
</tr>
<tr>
<td>A2CB1</td>
<td>rs1045642</td>
<td>C</td>
<td></td>
<td>Analgesia</td>
<td>Heij 2015</td>
</tr>
<tr>
<td>ABCB1</td>
<td>rs1045642</td>
<td>C/C</td>
<td></td>
<td>Cancer Pain</td>
<td>Wang 2015</td>
</tr>
</tbody>
</table>
Genetic Loci Associated With
Quantified By The Number Of Genetic Association Studies

Migraine

- MTHFR
- ACE
- PRDM16
- TNF
- ESR1
- AJAP1
- C7orf10
- DBH
- FHL5
- LRP1
- LTA
- MMP16
- TRPM8
- Other

Musculoskeletal Pain Disorders

- COMT
- HTR2A
- ESR1
- ADRB2
- II1A

Zorina-Lichtenwalter et al, Neuroscience, 2016
The Translational Research Clock – closing the circle

Association study results, *HMG*, 2005
(942 citations)

(607 citations)

Clinical trial – *Pharmacogenet Genomics*, 2010
(83 citations)

(198 citations)
Epiregulin and EGFR interactions are involved in pain processing

Phenotypes categories included in the HPGdb

- **Analgesia** (78) - 25%
- **Migraine** (68) - 22%
- **Nociception** (34)
- **Neuraxial Pain** (25)
- **Musculoskeletal pain** (30)
- **Fibromyalgia** (19)
- **Post-operative Pain** (18)
- **Non-musculoskeletal pain** (15)
- **Cancer Pain** (13)
- **Neuropathic Pain** (9)
Multiple Roads to Migraine

Freilinger et al Nature Genetics 2012
Heterogeneity of patient population

patients subgroup 1

patients subgroup 2
QQ plots for SNPs replication in the UK BioBank. Ratios are number of SNPs better than 20% FDR to the total number of SNPs in respective SNP groups (SNPs from GWAS in orange).
Non-organ specific approach to treatment cancer

Personalized Cancer Therapy

1. Molecular Profiling
2. Prognostic Markers
 - Markers predictive of drug sensitivity/resistance
 - Markers predictive of adverse events

Targeted therapies:
- PIK3CA target
- HER2 target
- FGFR target
- EGFR target
- KRAS target
Non-organ specific approach to treatment pain

Personalized pain treatment

Neuropathic pain patients
Low back pain patients
Osteoarthritis patients

Molecular Profiling

Prognostic Markers
Markers predictive of drug sensitivity/resistance
Markers predictive of adverse events

NGFR target
ADRB2 target
Ca++ channels target
NE target
5TH target
Welcome to the Human Pain Genetics Lab
Thank You