Preclinical Assessment of BBB-Crossing Amyloid-β Oligomer-Targeting Peptide Using PET, MRI and CSF Biomarkers

Human Health Therapeutics, National Research Council, Canada
KalGene Pharmaceuticals, Canada

Balu Chakravarthy
September 8th, 2017
Translational Challenges

• Animal models – translation across species (mouse, rat, dog)

• **Design of target engagement and efficacy** preclinical study that ‘mirrors’ typical clinical study design

• **Use of imaging (PET, MRI) and CSF biomarkers in preclinical study**

• Translational PK/PD modeling (**small brain to large brain**)

• Analytics that support translation
Therapeutic Molecule (KAL-ABP-BBB)

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molecule Development</th>
<th>Detection (Analytics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABP (4 kD)</td>
<td>Amyloid binding regions from human PCM-1; binds oligomeric Aβ with nM affinity</td>
<td>C-terminus-specific monoclonal antibody (ELISA, WB); specific peptides for nanoLC-SRM</td>
</tr>
<tr>
<td>FC5 (13 kD)</td>
<td>BBB-crossing V₁H; species cross-reactive; humanized</td>
<td>FC5-specific mouse monoclonal antibody (ELISA, WB); specific peptides for nanoLC-SRM</td>
</tr>
<tr>
<td>FC5-Fc-ABP-M (90 kD)</td>
<td>Surrogate molecule for rodent studies: mouse Fc; camelid FC5</td>
<td>Anti-mouse Fc antibody (ELISA, WB); specific peptides for nanoLC-SRM</td>
</tr>
<tr>
<td>FC5-Fc-ABP-H (90 kD)</td>
<td>Human studies: humanized FC5, engineered human Fc</td>
<td>Anti-human Fc antibody (ELISA, WB); specific peptides for nanoLC-SRM</td>
</tr>
</tbody>
</table>

BBB ‘Trojan’

- FC5 (camelid V₃H) – [15 kD]
 - BBB-crossing
- IgG Fc fragment [50 kD]
 - Prolongs serum half-life;
- Peptide [4.5 kD]
 - Amyloid oligomer binding and clearance
KAL-ABP-BBB crosses in vitro BBB intact

![Diagram](image)

KAL-ABP-BBB

- Anti-ABP
 - Wells: 1, 2, 3
 - Std: 75kD, 100kD

Rat-BBB

- Anti-Fc
 - Wells: 1, 2, 3
 - Std: 75kD, 100kD

Human-BBB

- Anti-ABP
 - Wells: 1, 2, 3
 - Std: 75kD, 100kD

Sandwich ELISA

- Wells: 1, 2, 3
- Std: KAL-ABP-BBB
- Reaction: +
Enhanced Brain Exposure of KAL-ABP-BBB transgenic mice

Time- and dose-dependent appearance of KAL-ABP in the tissue indicates delivery of ABP to target regions of the brain by FC5
Reduction of Amyloid-β levels in KAL-ABP-BBB treated Tg mice

Brain parenchyma

- **MRM**
 - Cortex: Aβ (relative MRM values) vs. Control+4h and 24 h, p < 0.007
 - Hippo: Aβ (relative MRM values) vs. Control+4h and 24 h, p < 0.001

- **ELISA**
 - Aβ42 (ng/mL) vs. Control+4h and 24 h, p < 0.02
 - Aβ42 (ng/mL) vs. Control+4h and 24 h, p < 0.03

CSF

- KAL-ABP-BBB 24 h post iv injection
- Aβ 24 h post iv injection

CSF Aβ levels could be used as surrogate for target engagement
Preclinical Efficacy Study Design: Animal model

McGill-R-Thy1-APP Tg Model (Claudio Cuello)

Leon et al., J Alzheimers Dis 2010
Preclinical Efficacy Study Design: Longitudinal Biomarker Assessment

PET

- [18F]NAV4694 (Aβ load)

- MRI
 - rsfMRI
 - Hippocampal volume

CSF/Plasma

- Aβ

- FC5
- hFc
- ABP

Safety: MR Susceptibility imaging

iv injection

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>29</td>
</tr>
</tbody>
</table>

4-week treatment

Serial collection of serum and CSF at various time points
PK and CSF Biomarker (Aβ) Profile

- KAL-ABP-BBB serum PK similar to that of a mAb
- CSF exposure 25-fold higher than that of a mAb

CSF levels of Aβ inversely correlate with KAL-ABP-BBB levels in transgenic rats
Drug Efficacy:
Aβ load is significantly reduced

$[^{18}F]NAV4694 \text{ BP}_{ND}$ at Baseline and Follow-up
Drug Efficacy:
Hippocampal volume is increased

- Increased hippocampal volume only in Tg-ABP group
Secondary Drug Efficacy: rs-fMRI ACC Connectivity

- Tg-ABP showed greater ACC connectivity compared to Tg-Sal treatment

Tg-ABP > Tg-Sal

Drug Safety: Microhemorrhage

- No evidence of drug-induced microhemorrhage

Before treatment

After treatment
Summary of longitudinal studies in AD rat model

- 27% reduction in global amyloid load
- 7% Increased hippocampal volume
- Restoring rs-fMRI ACC Connectivity
- No evidence of microhaemorrhage
Translation from small to large brain

Serum/CSF PK

Rat

Dog

Aβ in CSF

Rat (Tg)

Dog (aged)
Acknowledgements

Dr. Danica Stanimirovic
Dr. Yves Durocher
Dr. Arsalan Haqqani
Dr. Etienne Lessard
Dr. Kerry Rennie
Dr. Mahmud Bani

Dr. Nathan Yoganathan
Michael Waterson

Dr. Pedro Rosa-Neto
Dr. Serge Gauthier
Min Su Kang
Monica Shin
Dr. Gassan Massarweh
Dr. Jean-Paul Soucy