Biomarkers in Schizophrenia

David A. Lewis, MD

Translational Neuroscience Program
Department of Psychiatry

NIMH Conte Center for the Neuroscience of Mental Disorders
University of Pittsburgh
Disease Process in Schizophrenia

- Pathogenesis
- Pathophysiology
- Clinical Syndrome
- Prevention
- Treatment
- Etiology
- Pathological Entity
Biomarkers in the Context of Disease Process

- Critical features of a biomarker
 - A direct consequence of the disease pathology
 - A proximal mediator of one or more components of the clinical syndrome
 - Measurable in the clinical setting
 - Detectable in the prodromal state
Schizophrenia Affects Multiple Complex Brain Systems as Evidenced by the Range of Clinical Features

- **Positive symptoms:** Delusions, hallucinations, thought disorder
- **Negative symptoms:** Decreased motivation, diminished emotional expression
- **Cognitive deficits:** Impairments in attention, working memory, verbal fluency
- **Sensory abnormalities:** “Gating” disturbances
- **Sensorimotor abnormalities:** Eye tracking disturbances
- **Motor abnormalities:** Posturing, impaired coordination
P50 Evoked Potential as a Biomarker of Impaired Attention

- Fundamental deficit in schizophrenia is an inability to filter (gate) sensory stimuli, leading to deficits in sustained attention.

- When paired auditory stimuli are presented, the amplitude of the P50 component of the evoked response to the 2nd stimulus is normally reduced compared to the 1st stimulus.

- In schizophrenia, the P50 amplitude in response to the second stimulus is not reduced.
P50 Evoked Potential as a Biomarker of Impaired Attention

• In animals, cholinergic stimulation of alpha\textsubscript{7} nicotinic receptors on hippocampal interneurons is essential for the P50 reduction to the 2nd stimulus.

• Polymorphisms in CHRNA7 are associated with the P50 abnormality in humans.

• Alpha\textsubscript{7} nicotinic receptor expression is reduced in schizophrenia.
Disease Process in Schizophrenia

Pathogenesis

Pathophysicsiology
(Altered P50 Amplitude In Sensory Gating Tasks)

Etiology
(Variants in \textit{CHRNA7})

Pathological Entity
(Deficit In Alpha$_7$ Nicotinic Receptor Neurotransmission)

Clinical Syndrome
(Impaired Sustained Attention)

Prevention

Treatment
(Alpha$_7$ Nicotinic Receptor Agonist)
Proof-of-Concept Trial of an α7 Nicotinic Agonist in Schizophrenia

Ann Oliny, MD; Josette G. Harris, PhD; Lynn L. Johnson, PharmD; Vicki Pender, BS; Susan Kongs, BS; Diana Allensworth, BS; Jamey Ellis, BS; Gary O. Zerbe, PhD; Sherry Leonard, PhD; Karen E. Stevens, PhD; James O. Stevens, DVM, PhD; Laura Martin, MD; Lawrence E. Adler, MD; Ferenc Soti, PhD; William R. Kem, PhD; Robert Freedman, MD

Arch Gen Psychiatry 63:630, 2006
• DMXB-A, partial alpha7 nicotinic agonist

• Assessed response to the acute administration of placebo and two doses of DMXB-A

• P50 inhibition improved consistent with activation of alpha7 nicotinic receptors

• RBANS scores improved consistent with a beneficial effect on attention/cognition

• P50 response may serve as a means for selecting subjects with impaired attention who are likely to benefit from therapy and for monitoring their response
Schizophrenia Affects Multiple Complex Brain Systems as Evidenced by the Range of Clinical Features

- **Positive symptoms**: Delusions, hallucinations, thought disorder
- **Negative symptoms**: Decreased motivation, diminished emotional expression
- **Cognitive deficits**: Impairments in attention, working memory, verbal fluency
- **Sensory abnormalities**: “Gating” disturbances
- **Sensorimotor abnormalities**: Eye tracking disturbances
- **Motor abnormalities**: Posturing, impaired coordination
DLPFC Activation as a Function of Working Memory Load in Schizophrenia

R DLPFC (BA46)

% fMRI Signal Change

0-back 1-back 2-back

WM Load

Controls
Patients

n = 16 per group

Selective Alterations in DLPFC GABA Neurotransmission May Contribute to Working Memory Deficits

Lewis et al., *Nature Rev Neurosci* 6:312, 2005
Provisional Interpretation

- **Pathological entity**
 - Reduced GAD$_{67}$ mRNA expression with decreased GABA synthesis in chandelier neurons

- **Compensatory changes**
 - Decreased PV expression
 - PV reduces the residual intra-terminal Ca$^{2+}$ levels that contribute to the facilitation of GABA release during repetitive firing (*J Neurophys* 89:1414, 2003; *J Neurosci* 25:96, 2005)
 - Reduced GAT1 expression
 - Blockade of GABA re-uptake prolongs the duration of IPSCs when nearby synapses are activated synchronously (*J Neurosci* 23:2618, 2003)
 - Up-regulated post-synaptic receptors
 - Increase the efficacy of released GABA at AIS
Functional Consequences of Reduced Chandelier Neuron Input to Pyramidal Neuron Axon Initial Segments

- PV-positive GABA neurons and pyramidal neurons share common sources (e.g., thalamic afferents) of excitatory input (Melchitzky et al., *J Comp Neurol* 408:11, 1999).
 - The resulting feed-forward, disynaptic inhibition limits the time window for the summation of excitatory inputs required to evoke pyramidal neuron firing (Pouille and Scanziani, *Science* 293:1159, 2001).

- Each chandelier neuron targets multiple axon initial segments (Peters et al., *J Comp Neurol* 206:397, 1982).
 - Thus, a given chandelier neuron can synchronize the activity of local populations of pyramidal neurons (Klausberger et al., *Nature* 421:844, 2003).

- PV-positive, fast-spiking GABA neurons in the middle layers are linked via both chemical and electrical synapses.
 - These networks oscillate in the gamma band (30-80 Hz) range (Tamas et al., *Nat Neurosci* 366, 2000).
DLPFC Gamma Band Power Increases with Working Memory Load in Humans

Howard et. al., *Cereb Cortex* 13:1369, 2003
Prefrontal Gamma Synchrony, Induced in a Cognitive Control Task, is Reduced in Patients with Schizophrenia

Cho et al., *PNAS*, 2006
Disease Process in Schizophrenia

Pathogenesis
(NMDA Receptor Hypofunction-
Reduced Signaling via trkB)

Pathophysiology
(Reduced Gamma Band Power)

Etiology
(Variants in Nrg1 and Other Genes)

Pathological Entity
(Deficit in Chandelier Cell-mediated GABA Neurotransmission)

Clinical Syndrome
(Impaired Working Memory)

Prevention

Treatment
(GABA_A Alpha_2 Agonist)
Biomarkers in the Context of Disease Process

• **Critical features of a biomarker**
 – A direct consequence of the disease pathology
 – A proximal mediator of one or more components of the clinical syndrome
 – Measurable in the clinical setting
 – Detectable in the prodromal state

• **Electrophysiological measures that reflect the emergent properties of identified neurobiological mechanisms offer promise as biomarkers**
 – In clinical trials of novel compounds
 – In identifying both prodromal and symptomatic individuals likely to benefit from such compounds
Biomarkers in the Context of Disease Process

• Future promise
 – Ongoing advances in understanding the cell types and local circuits that generate oscillations of specific frequencies
 – More refined and biologically-informed cognitive paradigms to induce oscillations
 – Improved source resolution of scalp potentials
Implications for Improving Working Memory Dysfunction in Schizophrenia

- Goal: Activate selectively GABA_A receptors containing the alpha$_2$ subunit only when GABA is normally released from chandelier neuron axon terminals.
 - Tonic activation of these receptors or increased firing rate of chandelier neurons would disrupt the synchronization of pyramidal cell activity.

- Agonists with “benzodiazepine-like” properties (i.e., positive allosteric modulators), and selectivity for GABA_A receptors containing the alpha$_2$ subunit, would preserve the critical timing of inhibition provided by chandelier cell inputs.
 - Available benzodiazepines activate GABA_A receptors containing alpha$_1$ and alpha$_5$ subunits which mediate sedation and alterations in hippocampal function, respectively.

- The up-regulated state of GABA_A alpha$_2$ receptors at axon initial segments may improve the specificity of drug targeting.

Lewis et al., *Psychopharmacology* 174:143, 2004