Epidemiology of Glioma

Quinn T. Ostrom, Ph.D., M.P.H.

Department of Population and Quantitative Health Sciences
Case Comprehensive Cancer Center
Case Western Reserve University
Estimated New US Cancer Cases 2017

<table>
<thead>
<tr>
<th>Males</th>
<th>Females</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>19%</td>
<td>20%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>14%</td>
<td>12%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of skin</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>All other sites</td>
<td>23%</td>
<td>22%</td>
</tr>
</tbody>
</table>

Brain & other nervous system 1.6%

Brain & other nervous system 1.2%

ACS, 2017
Estimated US Cancer Deaths 2017

Males 318,420

Lung & bronchus 27%
Colon & rectum 9%
Prostate 8%
Pancreas 7%
Liver & intrahepatic bile duct 6%
Leukemia 4%
Esophagus 4%
Urinary bladder 4%
Non-Hodgkin lymphoma 4%
Brain & other nervous system 3%
All other sites 24%

Females 282,500

Lung & bronchus 25%
Breast 14%
Colon & rectum 8%
Pancreas 7%
Ovary 5%
Uterine corpus 4%
Leukemia 4%
Liver & intrahepatic bile duct 3%
Non-Hodgkin lymphoma 3%
Brain & other nervous system 3%
All other sites 24%

ACS, 2017
Overall incidence of primary brain and CNS tumors is 22.6 per 100,000 population

Malignant: 7.2 per 100,000 population
Non-Malignant: 15.5 per 100,000 population
Gliomas are the most common type of malignant brain tumor

- Gliomas account for ~27% of all brain tumors, and ~80% of malignant tumors
- Glioma is a heterogeneous disease with multiple subtypes
- The most common glioma histology glioblastoma (GBM) (~56%)
 - Very poor outcomes
- Lower grade gliomas (LGG, or non-GBM) are the second most common type of glioma in adults (~30%)
Incidence of glioblastoma varies across the population

- Incidence of glioblastoma increases with age.
 - Median age at diagnosis is 64.
- Incidence is higher in males as compared to females
- Globally:
 - Incidence of glioma is highest in Northern Europe.
- United States:
 - Incidence is highest in non-Hispanic whites
- Higher socioeconomic status has been associated with increased risk of glioblastoma (Porter et al., 2015)
Outcomes after diagnosis with glioblastoma are generally poor.
- Median survival: 12 months (Stupp et al., 2005)
- Five-year relative survival: ~5% (Thakkar et al., 2014; CBTRUS 2017)

Several factors predict improved survival:
- High Karnofsky Performance Score (KPS)
- Younger age at diagnosis
- Greater extent of surgical resection
- Biomarkers (MGMT promoter methylation, mutation of IDH1)
Incidence of glioblastoma has not changed substantially since the 1990s

- Incidence increases in the 1980s and 1990s are often attributed to increasing use of new imaging technologies.
- Since 1992, incidence of glioblastoma among adults has increased 0.4% per year in the US.
- These incidence patterns are similar to those observed in other countries.

Glioblastoma Incidence in the US (Ages 18+, 1973-2014)

- 1973-1978 APC=-7.3% (95% CI: -11.1%, -3.3%)
- 1978-1992 APC=2.7% (95% CI: 1.8%, 3.6%)
- 1992-2014 APC=0.4% (95% CI: 0.1%, 0.7%)

APC= Annual Percentage Change; 95% CI= 95% Confidence interval

SEER, 2017
Searching for a cause for glioma ...

- Many environmental and genetic risk factors have been studied.

- No environmental risk factor accounting for a large number of glioma cases has been identified.
 - Validated environmental risk factors likely account for only a fraction of incident cases

- No genetic risk factors that explain a large proportion of inherited risk for glioma have been identified
 - Genetic factors are estimated to account for ~25% of glioma risk (Kinnersley et al., 2016)
 - A small proportion of gliomas are due to inherited syndromes
 - Genetic association studies have identified common genetic variants that explain ~27% of genetic risk for glioblastoma (Melin et al., 2017)
GENETIC GLIOMA RISK FACTORS
Inherited syndromes associated with glioma

Estimated that hereditary cancer syndromes account for ~1% of adult glioma cases

- Neurofibromatosis 1 (NF1)
- Neurofibromatosis 2 (NF2)
- Tuberous sclerosis (TSC1, TCS2)
- Lynch syndrome (MSH2, MLH1, MSH6, PMS2)
- Li-Fraumei syndrome (TP53)
- Melanoma-neural system tumor syndrome (p16/CDKN2A)
- Ollier disease/Maffucci syndrome (IDH1, IDH2)

Genetic association studies in ‘glioma families’

‘Familial’ glioma (2+ glioma cases within a family) accounts for ~5% of glioma cases

- Family-based studies have consistently demonstrated that first degree relatives of glioma patients have ~2x the glioma risk in comparison to the general population.
- Linkage studies in affected ‘glioma families’ have not identified high-penetrance risk variants that are able to be validated.
- Additional analyses of these families have found that most inherited mutations in glioma families are private.
Genome-wide association studies have identified 12 common genetic variants associated with sporadic glioblastoma risk.

Melin et al., 2017
VALIDATED GLIOMA RISK FACTORS
Ionizing radiation exposure

- Therapeutic radiation exposure to the head has consistently been associated with increased risk of brain tumor
 - Israeli Tinea Capitus cohort (Sadetzki, et al 2005)
 - Childhood cancer survivors cohorts (Neglia, et al. 2006)
- Glioma risk after therapeutic radiation exposure is inversely associated with age at exposure
- Mixed or minimal evidence
 - Atomic bomb studies
 - Diagnostic radiation (e.g. CT scans, x-rays)
Allergies and atopic disease

• History of allergies and atopic conditions has consistently been associated with decreased risk of glioma.
 – Respiratory allergies
 – Asthma
 – Eczema
• Effect is consistent for both glioblastoma and lower grade glioma
• This inverse association has been consistent across multiple studies
UNPROVEN GLIOMA RISK FACTORS
Cellular phones (non-ionizing radiation)

- Most studies have not observed increased odds of glioma for having ever been a regular cellular phone user.
- Small increases in odds have been observed in users with the highest total use
 - INTERPHONE, 2010; Cardis et al., 2011
- Cohort studies have shown null association between cellular phone use and glioma
 - Benson et al., 2015; Frei et al., 2011
- Time trends analyses from multiple countries have shown no significant increases in incidence that would be expected given estimated risk ratios from case-control studies
 - de Vocht et al., 2011; Deltour et al., 2012; Little et al., 2012; Chapman et al., 2016
Electromagnetic fields

- Many studies have attempted to assess the association between occupational exposure to electromagnetic fields and risk of brain tumors.
- EMF exposure can be difficult to accurately measure.
 - Many studies construct job exposure matrices (JEMs) based on job title and length of employment.
- Results of previous case-control studies have been mixed.
 - In the INTEROCC consortium, increased odds were observed only in individuals with most recent exposure (Turner, el al. 2014).

<table>
<thead>
<tr>
<th>Glioma</th>
<th>Exposure metric</th>
<th>Cases</th>
<th>Controls</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cumulative exposure (μT-years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2.11</td>
<td>475</td>
<td>1,334</td>
<td>1.00 (ref.)</td>
<td></td>
</tr>
<tr>
<td>2.11–3.40</td>
<td>454</td>
<td>1,327</td>
<td>1.00 (0.85–1.16)</td>
<td></td>
</tr>
<tr>
<td>3.40–5.00</td>
<td>441</td>
<td>1,344</td>
<td>0.93 (0.78–1.11)</td>
<td></td>
</tr>
<tr>
<td>5.00–7.50</td>
<td>370</td>
<td>808</td>
<td>1.07 (0.88–1.31)</td>
<td></td>
</tr>
<tr>
<td>7.50+</td>
<td>199</td>
<td>540</td>
<td>0.80 (0.63–1.00)</td>
<td></td>
</tr>
</tbody>
</table>

	Average exposure (μT)			
<0.11	423	1,268	1.00 (ref.)	
0.11–0.13	398	1,273	0.98 (0.82–1.13)	
0.13–0.17	561	1,411	1.04 (0.89–1.22)	
0.17–0.24	330	856	0.95 (0.80–1.14)	
0.24+	237	545	1.00 (0.82–1.23)	

	Maximum exposed job (μT)			
<0.13	453	1,370	1.00 (ref.)	
0.13–0.17	458	1,290	0.92 (0.79–1.08)	
0.17–0.23	430	1,202	0.85 (0.73–1.00)	
0.23–0.62	382	947	0.92 (0.78–1.09)	
0.62+	216	544	0.80 (0.65–0.98)	

	Exposure duration (y)			
<5	1,333	3,849	1.00 (ref.)	
5–15	295	805	0.90 (0.77–1.05)	
15–25	142	371	0.94 (0.76–1.16)	
25+	169	328	1.22 (0.99–1.51)	

Turner et al., (2014)
Other explored sources of occupational exposures

• Mixed or minimal evidence
 – Farming associated with increased risk of glioma (Ruder et al., 2009)
 – Insecticides associated with increased risk of glioma (Louis et al., 2017)
 – Pesticides associated with increased risk of glioma (Yiin et al., 2012)
 – Military radiation exposure associated with increased risk of glioma, with increased effect in soldiers of higher rank (Grayson, 1996)
 – Rubber processing (Straif et al., 2000)

• No evidence
 – Metals and welding fumes (Parent et al., 2017)
 – Solvents (Benke et al., 2017)
 – Jet engine manufacturing (Marsh et al., 2013)
Viruses

- Viruses are known to cause brain tumors in experimental animals, but most have been minimally evaluated in glioma
- Prior infection with varicella zoster virus (chicken pox) has been repeatedly associated with decreased odds of glioma
 - Amirian et al., (2016)
- Limited and mixed evidence exists for other viral exposures, including:
 - Influenza
 - SV40
 - JC
 - BK

Wrensch et al., Neuro-oncology 2002
Other unproven environmental risk factors for glioma

- Air pollution
- Reproductive factors (e.g. parity, age at menarche, age at menopause)
- Exogenous hormone exposure (e.g. hormone replacement therapy, oral contraceptives)
- Prior cancer history
- Head trauma
- History of seizures
- *Toxoplasma gondii*
- Alcohol consumption
- Tobacco use

- Dietary nitrate consumption
- Vitamin use
- Cosmetics and hair dyes
- Sleeping pills
- Pain meds – Aspirin, NSAIDS
- Antihistamines

Wrensch et al., Neuro-oncology 2002; Ostrom et al., 2014
Limitations of case-control data for assessing glioma risk factors

- Many exposures that have been linked to glioma are difficult to measure, particularly when exposures are less recent
 - EMF exposure, total cell phone use
- Several studies of potential glioma risk factors conducted using case-control study designs have produced results not replicable in cohort studies (Johansen et al., 2017)
 - Ionizing radiation, sex hormone exposure
- It is likely that recall bias has inhibiting our ability to assess the relationship between
THANK YOU!
Key References

Key References, continued

