Overview of Precompetitive Collaboration for Institute of Medicine Workshop

February 10, 2010
What I plan to address (and not)

<table>
<thead>
<tr>
<th>What I plan to address</th>
<th>What I’ll leave for other speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Define the phenomenon</td>
<td>• Predict where it’s all heading</td>
</tr>
<tr>
<td>• Describe the range of models</td>
<td>• Prescribe specific best practices and tactics</td>
</tr>
<tr>
<td>• Derive some initial insights about these models</td>
<td>• Propose how to proceed</td>
</tr>
<tr>
<td></td>
<td>– How to address the larger hurdles (e.g., legal/IP issues, culture)</td>
</tr>
</tbody>
</table>
What is this phenomenon we are defining?

- Linux
- Wikipedia
- Sematech
- Fermilab
- Human Genome Project
- SNP Consortium
- HapMap
- Biomarkers Consortium
- X Prize Genomics
- InnoCentive
- Pistoia
- Alliance for Cellular Signaling
- Merck-AstraZeneca
- Pink Army Collaborative
- ...

What is it??

- "Precompetitive collaboration"
- "Public-private partnerships"
- "Open source"
- "Open innovation"
- "Distributed innovation"
- "Crowdsourcing"
Framing the phenomenon

- What is the goal?
- Who is contributing?
- Who will directly access the outputs?
- How is the effort organized?
What is the goal?
What do these collaborations have in common?

They are focused on a shared challenge that is critical for progress…

…that cannot be feasibly tackled by a single organization …

…and cannot be exploited as a standalone profit-making opportunity
What is the goal?
What are the outputs?

Build enabling platforms
- Develop standards, tools

Conduct research
- Generate/aggregate data
- Create new knowledge
- Develop a product

- Develop the necessary infrastructure and methods to allow for more efficient data sharing and R&D process innovation
- Use those tools to aggregate, generate, and integrate data to achieve necessary scale for research
- Transform that data into new knowledge by accessing resources and capabilities across organizations
- Turn that knowledge into a product by accessing resources and capabilities across organizations
Who are the players?

How open/closed is the collaboration?

<table>
<thead>
<tr>
<th>Collaboration more likely to be open if…</th>
<th>Collaboration more likely to be restricted if…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who needs to contribute?</td>
<td>Who will access the outputs?</td>
</tr>
<tr>
<td>• Low barriers to entry</td>
<td>• Output cannot be directly monetized</td>
</tr>
<tr>
<td>• Need for quantity of input outweighs quality control</td>
<td>• Problem would benefit from ongoing development</td>
</tr>
<tr>
<td>• Novel perspectives are sought from diverse fields</td>
<td>• Output closer to commercialization</td>
</tr>
<tr>
<td></td>
<td>• Tied to cost to fund the effort – to avoid free riders</td>
</tr>
<tr>
<td></td>
<td>• Proprietary IP in outputs</td>
</tr>
</tbody>
</table>
Who are the players?

Open vs. closed: four possible combinations

Who needs to contribute?

Restricted

Open

e.g., HGP

e.g., Netflix prize

Who will directly access the outputs?

e.g., inter-company collaboration

e.g., Linux
Inter-organizational research collaborations

<table>
<thead>
<tr>
<th>Participants/beneficiaries:</th>
<th>Build enabling platforms</th>
<th>Conduct research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open participation</td>
<td>Develop standards/tools</td>
<td>Create new knowledge</td>
</tr>
<tr>
<td>Open participation</td>
<td>Generate/aggregate data</td>
<td></td>
</tr>
<tr>
<td>Restricted participation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restricted participation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collaboration goals:

- Open participation: Open output
- Restricted participation: Restricted output
Inter-organizational research collaborations

<table>
<thead>
<tr>
<th>Collaboration goals:</th>
<th>Build enabling platforms</th>
<th>Conduct research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Develop standards/tools</td>
<td>Create new</td>
</tr>
<tr>
<td></td>
<td>Generate/aggregate data</td>
<td>knowledge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants/beneficiaries:</th>
<th>Open participation</th>
<th>Restricted participation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open output</td>
<td>Academic/public only</td>
<td>Academic/industry</td>
</tr>
<tr>
<td>Restricted output</td>
<td>Industry only</td>
<td>Foundation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Build enabling platforms</th>
<th>Conduct research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>Pink Army Coop</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>India OSDD</td>
</tr>
<tr>
<td>Synaptic Leap</td>
<td></td>
</tr>
<tr>
<td>Open Health NLP</td>
<td></td>
</tr>
<tr>
<td>CDISC</td>
<td>Bimarkers Consort</td>
</tr>
<tr>
<td>Pistoia</td>
<td>Diabetes Genetics Init</td>
</tr>
<tr>
<td>C-Path</td>
<td>Innovative Meds Init</td>
</tr>
<tr>
<td>HapMap</td>
<td>CCMX</td>
</tr>
<tr>
<td>RNAi</td>
<td>SAEC</td>
</tr>
<tr>
<td>Signaling Gateway</td>
<td></td>
</tr>
<tr>
<td>Sematech</td>
<td></td>
</tr>
<tr>
<td>CERN</td>
<td></td>
</tr>
<tr>
<td>Fermilab</td>
<td></td>
</tr>
<tr>
<td>SLAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eight models of precompetitive collaboration

<table>
<thead>
<tr>
<th>Participants/beneficiaries:</th>
<th>Collaboration goals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open participation</td>
<td>Build enabling platforms</td>
</tr>
<tr>
<td>Open output</td>
<td>Develop standards/tools</td>
</tr>
<tr>
<td>Open participation</td>
<td>Linux</td>
</tr>
<tr>
<td>Open output</td>
<td>Wikipedia</td>
</tr>
<tr>
<td>Open participation</td>
<td>Synaptic Leap</td>
</tr>
<tr>
<td>Open output</td>
<td>Open Health NLP</td>
</tr>
<tr>
<td>Restricted participation</td>
<td>1. Open source initiatives</td>
</tr>
<tr>
<td>Open output</td>
<td>CDISC</td>
</tr>
<tr>
<td>Restricted participation</td>
<td>Pistoia</td>
</tr>
<tr>
<td>Open output</td>
<td>C-Path</td>
</tr>
<tr>
<td>Restricted participation</td>
<td>HapMap</td>
</tr>
<tr>
<td>Restricted output</td>
<td>RNAi</td>
</tr>
<tr>
<td>Restricted output</td>
<td>Signaling Gateway</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SemiTech</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Industry consortia for process innovation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Public-private consortia for knowledge creation</td>
</tr>
<tr>
<td></td>
<td>5. Prizes</td>
</tr>
<tr>
<td></td>
<td>7. Industry complementors</td>
</tr>
<tr>
<td></td>
<td>8. Virtual pharma companies</td>
</tr>
</tbody>
</table>
Eight models of precompetitive collaboration

1. Open source initiatives
2. Industry consortia for R&D process innovation
3. Discovery-enabling consortia
4. Public-private consortia for knowledge creation
5. Prizes
6. Innovation incubators/insourcing
7. Industry complementor relationships
8. Virtual pharma companies
1. Open source initiatives

• Description
 – Build collaborative platforms / infrastructure / standards to create open networks for innovation
 – E.g., Linux, Wikipedia, Sage, PatientsLikeMe

• Why do it?
 – Leverages the broadest spectrum of researchers to address a problem
 – Allows anyone to freely access fruits of research

• Challenges and lessons learned
 – Hurdles (e.g., culture, IP) likely greater in biomedicine than software
 – Successful profit models can be built around open source output (e.g. Red Hat)
 – Even open networks require central oversight (e.g. Linux, Wikipedia)
2. Industry consortia for R&D process innovation

- Description
 - Consortia of industry members to improve non-competitive aspects of R&D process
 - Can be organized / facilitated by third parties
 - E.g., Sematech, Pistoia, C-Path, CDISC

- Why do it?
 - Creating standards facilitates industry communication and innovation
 - Pooling resources leverages investment, minimizes risk in technology devt

- Challenges and lessons learned
 - Critical mass of participants is necessary if new standards are to take hold
 - While industry-centric by definition, academic input can broaden perspective
 - Important to build trust via proactive agreement on how IP will be shared
3. Discovery-enabling consortia

- **Description**
 - Consortia of academia and/or industry providing critical mass to generate scale of data needed for innovation
 - E.g., Human Genome Project, SNP Consortium, Alliance for Cellular Signaling, CERN, Fermilab

- **Why do it?**
 - Sheer scale of data needed cannot be achieved by any one player alone
 - Data warehouses, while not immediately monetizable, are of high value for future discovery
 - Putting data in public domain can be a defensive move – to ensure freedom to operate

- **Challenges and lessons learned**
 - More likely to succeed if a sense of urgency and/or built-in demand/application for output
 - Aligning differing industry/academic goals upfront facilitates coordination and progress
 - Dedicated project management is often necessary to coordinate larger efforts
4. Public-private consortia for knowledge creation

• Description
 – Collaborations between industry and academia to create upstream knowledge to enable downstream innovation
 – E.g., Diabetes Genetics Initiative (Novartis-Broad-Lund), Biomarkers Consortium, Serious Adverse Event Consortium

• Why do it?
 – Key research challenge with no immediate market potential but essential downstream value
 – Provides opportunity for closer academia/industry partnerships than “sponsored research”

• Challenges and lessons learned
 – Must align differing industry / academic goals to encourage contribution from all partners
 – Project management with explicit milestones ensures coordination among disparate parties
 – Small consortia may be better equipped to address certain issues -- e.g., regulatory issues related to tissue sharing
5. Prizes

- **Description**
 - Solicit innovative solutions via a transactional relationship, sponsored by industry or foundations, directly or via a third party
 - E.g. InnoCentive, Archon X Prize Genomics, Netflix prize

- **Why do it?**
 - Broad range of contributors leverages talent from diverse fields
 - Can produce critical incremental solutions or catalyze game-changing innovation
 - Large prizes generate publicity – and thus more potential contributors
 - Return on investment can be substantial vs. in-house R&D

- **Challenges and lessons learned**
 - For smaller prizes, must find ways to break problem down into discrete, solvable parts
 - For all prizes, must have clearly-defined objectives and metrics
 - Need to establish a process for integrating external solution into in-house R&D pipeline
6. Innovation incubators/insourcing

- **Description**
 - Sponsored research, brought in-house with additional resources to conduct work
 - E.g. Biogen Idec bi³, Siemens Technology to Business, P&G Connect + Develop

- **Why do it?**
 - Leverages external ideas to fill pipeline of host company beyond what’s internally possible
 - Unlocks outside creative capital that would otherwise lie dormant
 - Fills gap between basic “sponsored research” and VC-targeted late-stage research
 - Hedges risk for both host company and potential academic / entrepreneurial collaborators

- **Challenges and lessons learned**
 - Integration of outside talent into host organization / culture can pose a challenge
 - Insourcing development costs can be a financial disincentive vs. traditional VC investing
7. Industry complementor relationships

• Description
 – Focused collaboration between a small number of competitors for mutual benefit

• Why do it?
 – Value of what companies provide together is greater than the sum of what they could provide separately
 – Enables companies to monetize assets that would be of limited value in isolation
 – Unlocks dormant IP through new business models (particularly relevant to pharma)

• Challenges and lessons learned
 – Challenge of getting over trust hurdle in sharing late-stage IP with competitors
 – Smaller collaborations make it easier to negotiate IP / sharing policies
8. Virtual pharma companies

• Description
 – Collaborations driven by foundations to develop drugs
 – E.g. Multiple Myeloma Research Foundation, CHDI Foundation (Huntington’s), Myelin Repair Foundation

• Why do it?
 – Provides way forward for neglected and rare diseases with little market potential
 – Virtual nature allows funds to target participants with greatest expertise and value
 – Drives progress by “forcing” open collaboration and data sharing as a condition of funding

• Challenges and lessons learned
 – Foundations add value via project mgmt, coordination across diverse research platforms
 – IP must be protected to make clinical trials / commercialization through pharmas profitable
 – Getting large pharma to perform necessary trials remains a challenge
Some parting thoughts:
Precompetitive collaboration and value creation

- Precompetitive collaboration may be viewed, through the lens of economics, as a means of creating and unlocking value

- Precompetitive collaboration aims to increase the value “pie”
 - …by enabling innovation that would not have occurred otherwise
 - …and reducing the cost of innovation (e.g., technology development)

- Businesses can cooperate to increase the size of the pie while they continue to compete around how to divide it

- Where successful, a win/win for industry, academia… and society
Acknowledgements

- David Altshuler, SNP Consortium, HapMap, Diabetes Genetics Initiative
- Robi Blumenstein, CHDI Foundation
- Adam Brandenburger, NYU Stern School of Business
- Lew Cantley, Alliance for Cellular Signaling, Stand Up 4 Cancer
- Bruce Chrisman, Fermilab
- Peter Diamandis, X Prize Foundation
- Steven Friend, Sage
- Rainer Fuchs, Biogen Idec
- Arthur Holden, SNP Consortium, Serious Adverse Events Consortium
- Karim Lakhani, Harvard Business School
- Nick Lynch, Pistoia
- Bill Spencer, Sematech
- Chris Streeter, AltshulerGray LLC
- John Wagner, Biomarkers Consortium
- John Wilbanks, Science Commons
- Ray Woosley, Critical Path Institute