Life Sciences Consortium
Task Force Report to The National Cancer Policy Forum Workshop

Gregory A. Curt, MD, Chair
U.S. Medical Science Lead, Emerging Products
AstraZeneca - Oncology
Outcome: CEOs agreed to ask and answer one important question:

“What are we doing in our own companies with respect to cancer awareness, prevention, early diagnosis and optimal treatment?”
What is the LSC?

• **Membership:** Representatives from CEO-RT Companies Involved in Health Research

• **Mandate:** Accomplish Together What No Single Company Might Consider Alone

• **Methods:** Engage Academic Centers, NCI and Others as “Safe Harbors” in Shared Areas of Mutual Interest

Be Bold And Venturesome
What Makes LSC Unique?

Consortium of Industry Oncology Programs Seeking Collaborative Accomplishments

Viewed as Collaborative by the DoJ
LSC Priorities

Provide Safe & Effective New Medicines … Faster

- *Decrease* the Time for Patients to Enter Cancer Clinical Trials
- *Develop* a Pool of Pre-Competitive Intellectual Property for Biomarkers
- *Diminish* the Regulatory Burden of New Cancer Drug Approval
Product Development Time Comparisons

Decreasing the Time to Enter Trials

- *What* is the rate-limiting factor for opening a clinical trial?
 - *What researchers thought:* processing by Institutional Review Board (IRB)
 - *What the data showed:* contracting & budgeting!
Does time make a difference?

• Yes, for three reasons:
 1. ~$1M of sales is lost every day a drug is not in the market
 2. Every day, there are ~3,800 new cancer diagnoses and ~1,500 cancer deaths
 3. Each day of delay is more likely a study will fail to achieve its goal
Importance of Time

- **64%** the critical Phase III clinical trials “never finish” i.e., did not enroll enough patients to answer a scientific question
- **29%** of oncology trials started result in **zero** patients
AMC Contract Execution Cycle Time 2008

Days to contract execution

Of the 18% of Sites with greater than 120+ Days AMCs sites make up > 90%
Contract Negotiation:
A Key Bottleneck to Starting Clinical Trials

• Collaboration Between LSC Companies (11), Cancer Centers (14), and Cooperative Groups (5)
• *Hogan & Hartson* Reviewed Redacted Final Agreements (49) and Agreement Templates (29)
• *Hogan & Hartson* Obtained Letter from the DOJ
• Finding: Two-thirds of the Language in the Approved Agreements Converged

• Results: the “START” Clauses
“START- II”

Pre-Clinical Trial Contracts

• Use the Same Methods to Expand *START Clauses* to Studies of New Industry Drugs with Academic Collaborators in the Laboratory
 - Intellectual Property Risk is Greater
 - The Potential Results of Early Partnering with Academic Centers of Excellence Could Be Considerable
 - There are Currently No Standards Governing the Important Areas Covered in the *Clinical START Clauses*
LSC Priorities

Provide Safe & Effective New Medicines … Faster

- Decrease the Time for Patients to Enter Cancer Clinical Trials
- Develop a Pool of Pre-Competitive Intellectual Property for Biomarkers
- Diminish the Regulatory Burden of New Cancer Drug Approval
Create a Pre-Competitive Pool of IP For Drug Development

• Biomarkers

• Potential Approach: LSC Companies Present Programs *Under Confidentiality* to NCI
 - NCI Selects Most Promising Markers for Co-Investment and Collaboration
 - NCI Invests in “Gaps”

• Validated Marker Enters Public Domain
Biopsy Assays

<table>
<thead>
<tr>
<th>Concept</th>
<th>Feasibility & Development</th>
<th>Validation</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Application</td>
<td>Platform</td>
<td>Feasibility</td>
</tr>
<tr>
<td>γ-H2AX Protein (tumor)</td>
<td>DNA Damaging Agents</td>
<td>ELISA</td>
<td>P</td>
</tr>
<tr>
<td>γ-H2AX Protein (tumor)</td>
<td>DNA Damaging Agents</td>
<td>qIF</td>
<td>P</td>
</tr>
<tr>
<td>Top 1 Protein</td>
<td>TOPO Inhibitors</td>
<td>ELISA</td>
<td>P</td>
</tr>
<tr>
<td>MET TK domain and Grb2 Docking Site</td>
<td>Kinase Inhibitors</td>
<td>IFA Commercial Reagents</td>
<td>P</td>
</tr>
<tr>
<td>MET TK domain and Grb2 Docking Site</td>
<td>Kinase Inhibitors</td>
<td>IFA Custom Reagents</td>
<td>P</td>
</tr>
<tr>
<td>PARG mRNA</td>
<td>PARP Inhibitors</td>
<td>RT-qPCR</td>
<td>P</td>
</tr>
<tr>
<td>PARP 1 mRNA</td>
<td>PARP Inhibitors</td>
<td>RT-qPCR</td>
<td>P</td>
</tr>
<tr>
<td>PARP 1,2 Activity (PAR levels)</td>
<td>PARP Inhibitors</td>
<td>IA</td>
<td>P</td>
</tr>
<tr>
<td>PARP 2 mRNA</td>
<td>PARP Inhibitors</td>
<td>RT-qPCR</td>
<td>P</td>
</tr>
<tr>
<td>Stem Cell Proteins -ALDH 1A1 -OCT 3/4 -NANOG -CD44v6</td>
<td>Tumor Stem Cell Inhibitors</td>
<td>IFA</td>
<td>P</td>
</tr>
</tbody>
</table>

KEY:
- **P** Completed
- **X** Dropped
- **CA** Commercially Available
- **NA/UIN** Not Applicable or Uninformative
- **R** Ready
- **H** On Hold
- **In Progress**
- **Delayed**
- **Technical Difficulty**
<table>
<thead>
<tr>
<th>Concept</th>
<th>Feasibility & Development</th>
<th>Validation</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Application</td>
<td>Platform</td>
<td>Feasibility</td>
</tr>
<tr>
<td>AKT/mTOR/ PTEN pathway</td>
<td>Kinase Inhibitors</td>
<td>IFA</td>
<td>Planned</td>
</tr>
<tr>
<td>Alpha-Catenin mRNA</td>
<td>Multiple</td>
<td>RT-qPCR</td>
<td>CA</td>
</tr>
<tr>
<td>Alpha-Catenin Protein</td>
<td>Multiple</td>
<td>IFA</td>
<td>P</td>
</tr>
<tr>
<td>Beta-Catenin mRNA</td>
<td>Multiple</td>
<td>RT-qPCR</td>
<td>CA</td>
</tr>
<tr>
<td>Beta-Catenin Protein</td>
<td>Multiple</td>
<td>IFA</td>
<td>P</td>
</tr>
<tr>
<td>DNA Methylation Me-CpG LINE1</td>
<td>Methylation Inhibitors</td>
<td>Pyro-sequence</td>
<td>P</td>
</tr>
<tr>
<td>DNA Methylation DNMT1 Activity</td>
<td>Methylation Inhibitors</td>
<td>IA</td>
<td>P</td>
</tr>
<tr>
<td>DNA Methylation Global Methylation (core facility)</td>
<td>Methylation Inhibitors</td>
<td>Microarray</td>
<td></td>
</tr>
<tr>
<td>E-cadherin mRNA</td>
<td>Multiple</td>
<td>RT-qPCR</td>
<td>CA</td>
</tr>
<tr>
<td>E-cadherin Protein</td>
<td>Multiple</td>
<td>IFA</td>
<td>P</td>
</tr>
<tr>
<td>ER Protein</td>
<td>General Marker, Methylation Inhibitors</td>
<td>IHC Ventana</td>
<td>P</td>
</tr>
<tr>
<td>Tyrosinase mRNA Melanoma Marker</td>
<td>Melanoma Drugs</td>
<td>RT-qPCR</td>
<td>P</td>
</tr>
</tbody>
</table>

KEY:
- **l** In Progress
- **P** Completed
- **X** Dropped
- **Delayed**
- **CA** Commercially Available
- **NA/UIN** Not Applicable or Uninformative
- **Technical Difficulty**
- **H** On Hold
- **R** Ready
<table>
<thead>
<tr>
<th>Concept</th>
<th>Feasibility & Development</th>
<th>Validation</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Application</td>
<td>Platform</td>
<td>Feasibility</td>
</tr>
<tr>
<td>γ-H2AX (skin)</td>
<td>DNA Damaging Agents</td>
<td>IFA</td>
<td>P</td>
</tr>
<tr>
<td>γ-H2AX (MNC)</td>
<td>DNA Damaging Agents</td>
<td>qIF (cytospin)</td>
<td>P</td>
</tr>
<tr>
<td>AKT/mTOR/ PTEN pathway (CTC)</td>
<td>Kinase Inhibitors</td>
<td>CellSearch (CTC)</td>
<td>H</td>
</tr>
<tr>
<td>γ-H2AX (CTC)</td>
<td>DNA Damaging Agents</td>
<td>CellSearch (CTC)</td>
<td>P</td>
</tr>
</tbody>
</table>

Normalization (Denominator) Assays

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Beckman Coulter ACT</th>
<th>CA</th>
<th>P</th>
<th>CA</th>
<th>P</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC Differential (%)</td>
<td>Denominator (Normalization)</td>
<td></td>
</tr>
<tr>
<td>Number of PBMCs (%)</td>
<td>Denominator (Normalization)</td>
<td></td>
</tr>
<tr>
<td>Number of PBMCs (cell #)</td>
<td>Denominator (Normalization)</td>
<td></td>
</tr>
<tr>
<td>Tissue Cellularity Actin mRNA</td>
<td>Denominator (Normalization)</td>
<td></td>
</tr>
<tr>
<td>Tissue Cellularity Actin Protein</td>
<td>Denominator (Normalization)</td>
<td></td>
</tr>
</tbody>
</table>

KEY:
- In Progress
- Delayed
- Technical Difficulty
- Completed
- Commerce Available
- NA/UIN
- Not Applicable or Uninformative
- Ready
- X
- Dropped
Accelerating NCI’s Timeline to Personalized Medicine in Cancer Treatment

Pre-Clinical START Clauses

- Development of biomarker assays
- Pharmacology, Toxicology, Formulation
- First-in-Human Clinical Trials
- Prospective biomarker validation clinical trial

Clinical START Clauses

- Discovery, pre-clinical efficacy
- Parallel track imaging agent development
- Early combination & combined modality trials

'10 '11 '12 '13 '14 '15

FDA
No Pharmacodynamic Marker: Phase III Trial Where 25% Patients Show Treatment Effect

N = 400 patients total
25% eligible pts Rx effective
50 with median OS 27 mo
150 median OS 22 mo
200 placebo median OS 22 mo
Effect of Trastuzumab in HER 2 Positive Breast Cancer

Overall Survival

N = 469
RR = 0.76
p = 0.025

Probability Alive

- H + CT
- CT

Months 5 15 25 35 45

25.4 mo (∆25%)
20.3 mo
LSC Priorities

Provide Safe & Effective New Medicines ... Faster

• Decrease the Time for Patients to Enter Cancer Clinical Trials
• Develop a Pool of Pre-Competitive Intellectual Property for Biomarkers
• Diminish the Regulatory Burden of New Cancer Drug Approval
Improving the “Critical Path” for New Cancer Therapies

- **Collaborative initiative convened by Brookings and Friends of Cancer Research**
 - Supported by ASCO, AACR, Susan G. Komen, and Lance Armstrong Foundation
 - With full participation from FDA, NCI, patient advocates, and life sciences industry

- **Conference on Clinical Cancer Research**
 - September 14, 2009; Washington, DC
 - Data Submission Standards
 - Auditing PFS Endpoints
 - Targeted Therapies and Companion Diagnostics
 - Evaluating Two Investigational Agents in Combination
Optimizing Data Submissions

- The amount of data collected in Phase III trials for supplemental approvals is excessive. *Is there a more effective approach?*
 - Grades 1 or 2 *Adverse Events*
 - *Adverse Events* start/stop dates
 - Concomitant meds

- **ASCO formed the** *Data Optimization Working Group*
 (8 trials from CALGB, GSK, Eli Lilly, Novartis, and Genentech)

- **Recommendations (for qualified supplemental trials):**
 - *Adverse Events* data collection in subsets of patients
 - No collection of concomitant meds or start/stop dates for *Adverse Events* except by cycle
 - Guidance from FDA
What Makes LSC Unique?

Engages 3rd parties as “Safe Harbors”