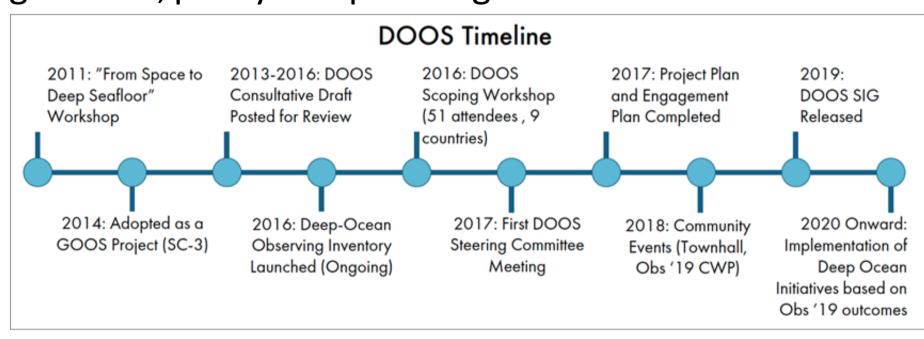
The National Academies of SCIENCES ENGINEERING MEDICINE

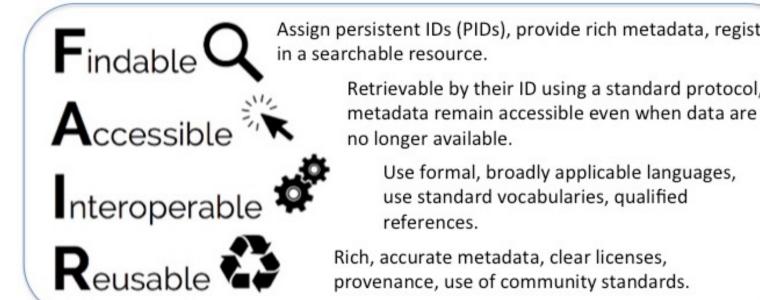

Implementing a Global Deep Ocean Observing Strategy (iDOOS)

Lisa Levin¹ Patrick Heimbach² Henry Ruhl³ Karen Stocks¹ Andrea McCurdy⁴ Leslie Smith ⁵

¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA (<u>llevin@ucsd.edu</u>); ²University of Texas at Austin, Austin, TX; ³Monterey Bay Aquarium Research Institute, Moss Landing, CA; ⁴University Corporation for Atmospheric Research, Naples, FL; ⁵Your Ocean Consulting, LLC, Knoxville, TN

iDOOS Background & Mission

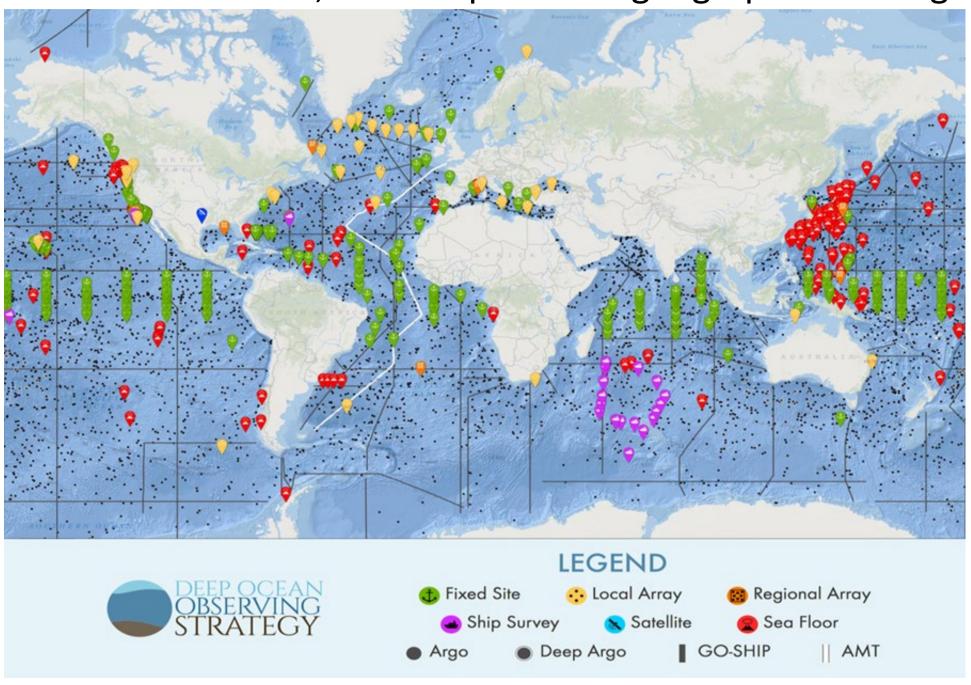
The **Deep Ocean Observing Strategy (DOOS)** is a GOOS project envisioning a globally integrated network of systems that observes the deep ocean (> 200m, with emphasis > 2000m) in support of strong science, policy and planning for sustainable oceans.


This ocean shot (iDOOS) will implement an interconnected network of deep-ocean observing, mapping, exploration, and modelling programs working together for the coming decade.

iDOOS will:

- Characterize physics, biogeochemistry (BGC), and biology of the deep ocean in space and time
- Establish a baseline required to understand changes to its habitats and services
- Provide information needed for a healthy, predicted, resilient and sustainably managed (deep) ocean

iDOOS Actions


- Identify Essential Ocean Variables (EOVs) and evolve their specifications to fully consider deepocean perspectives across physical, BGC, biological, and ecological variables
- Incorporate modeling needs, expand deep-observing community to embrace exploration and industry, promote multi-disciplinary observing
- Design and evaluate observing systems and oversee demonstration projects to provide a blueprint for global deep-ocean observation technology readiness and deep-ocean FAIR data. Currently proposed demonstration projects: Clarion Clipperton Fracture Zone, Northeast Pacific, & Azores Archipelago

- Serve as a communication hub for a broad spectrum of stakeholders in the deep-ocean science, data, and information user communities
- Provide an avenue through which the deep ocean research community and the data they produce can reach policy makers and inform policy decisions

Observing Status

DOOS maintains an inventory to assess the status of deepocean observing - platforms, sensors, water depths, variables measured, and temporal and geographic coverage.

Thematic Activities

Thematic Working Groups will address:

- (i) Requirement Setting
- (ii) Implementing Observing (iii) Translation of Science to Policy
- With input from iDOOS EOV Task Teams:

Physics, Biogeochemistry, Ecology/Biology, & Data

Outcomes

• Interoperable landscape of standardized, analysis-ready, automated data access across a broad range of data types in a manner suitable for predictive big data science;

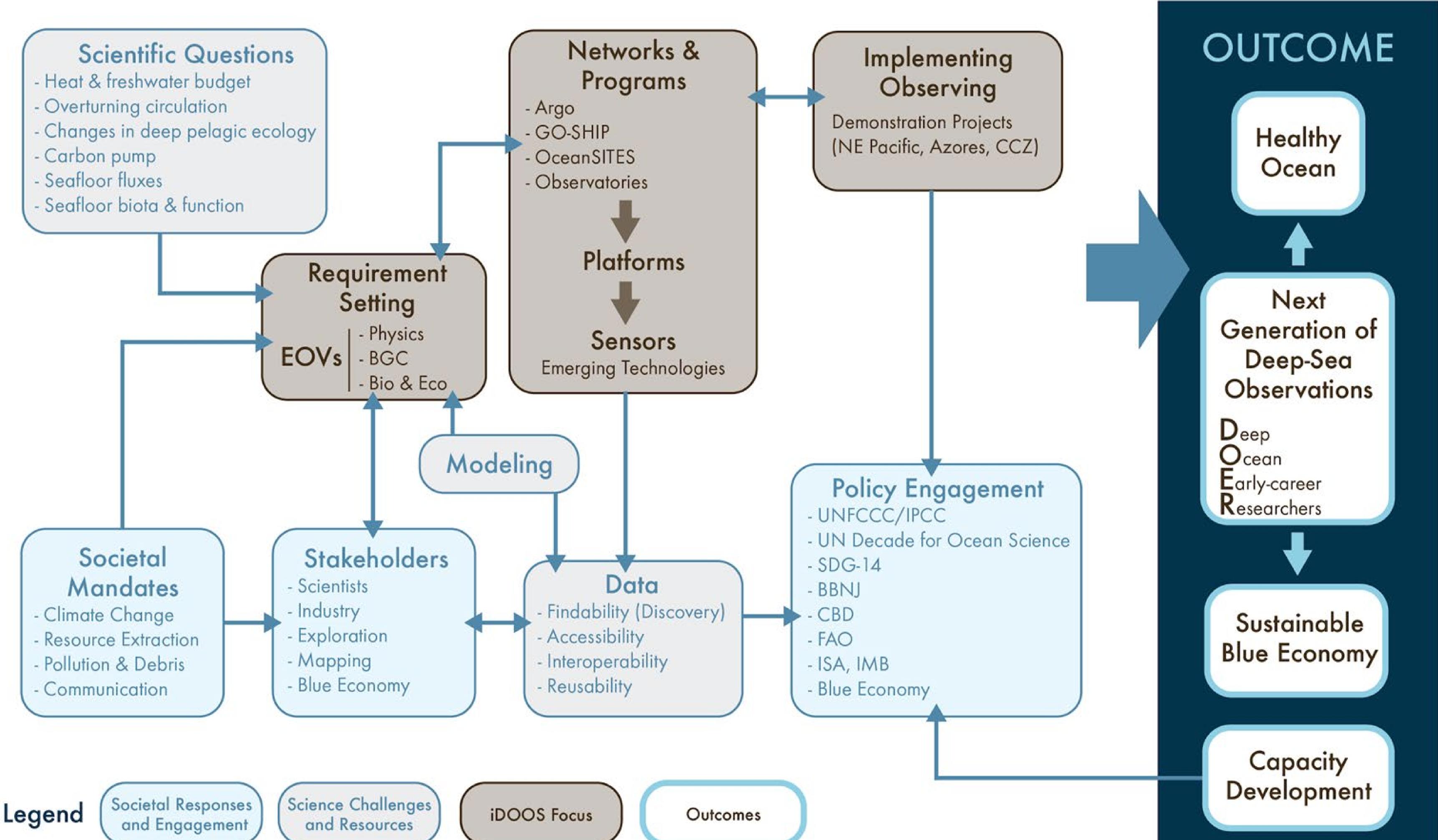
technology that is smart, integrated, deep-sea capable, and

scalable to operate as a globally distributed autonomous network;

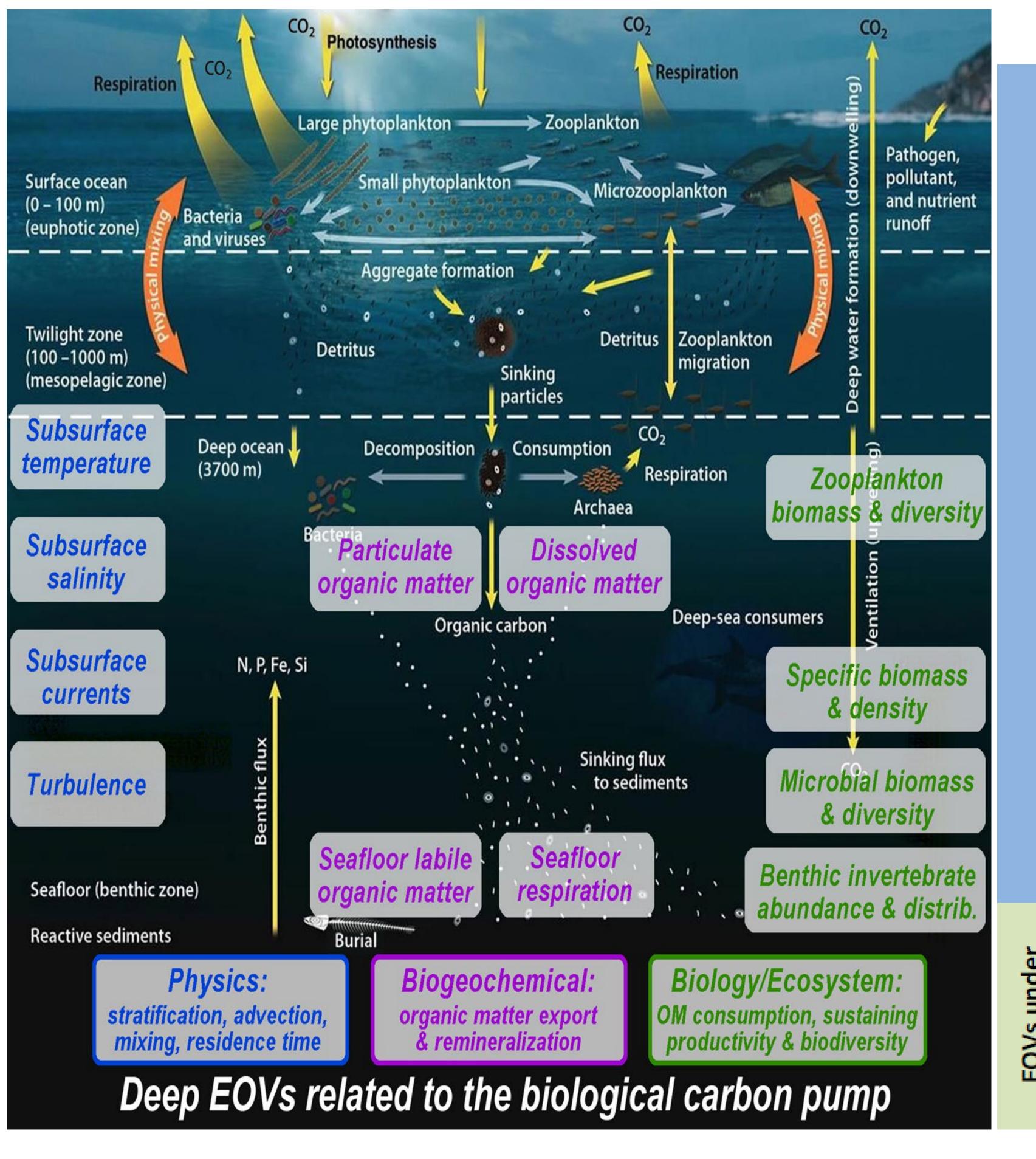
Development & deployment of multi-disciplinary sensing

- A framework for international coordination and collaboration among stakeholders, regulators, and policymakers for science-guided decision-making, optimal asset deployment and data sharing;
- Establishment of an inclusive community that reflects the diversity of the nation and works for a sustainable, just, and equitable deep ocean science and management.
- Create a community and infrastructure that generates deep ocean information needed to address critical scientific and management questions related to the climate, biodiversity and sustainability.

iDOOS Science Goals


- Understand global deep- and bottom-water formation rates, variability, & the time scales of property changes while assessing heat, & circulation dynamics
- Document deep-ocean transport and ventilation processes & assess their impact on ocean BGC processes on the seafloor and in the water column
- Understand marine deep-sea biodiversity & ecosystem services in light of human-induced & natural changes
- Understanding these processes will contribute to sustainability efforts and climate policy decisions

The Next Generation


iDOOS will host the Deep-Ocean Early-career Researchers (**DOERs**), a globally diverse & inclusive group of peers from the iDOOS partner networks & the broader deep ocean observing community to:

- Advocate for and raise the profile of DOERs
- Provide transferable skills in networking, collaboration and outreach
- Cement their inclusion in and position them to become **future leaders** of deep-ocean observing

Implementing a Deep Ocean Observing Strategy

Revision of deep ocean observing requirements adopting the GOOS EOV framework.

		Essential Ocean Variables (EOVs)		
		PHYSICS	BIOGEOCHEMISTRY	BIOLOGY AND ECOSYSTEMS
GOOS FOVs		Sea state	Oxygen	Phytoplankton biomass and diversity
		Ocean surface stress	Nutrients	Zooplankton biomass and diversity
		Sea ice	Inorganic carbon	Fish abundance and distribution
		Sea surface height	Transient tracers	Marine turtles, birds, mammals abundance & distribution
		Sea surface temperature	Particulate matter	Hard coral cover and composition
	Š	Subsurface temperature	Nitrous oxide	Seagrass cover
		Surface currents	Stable carbon isotopes	Macroalgal canopy cover
		Subsurface currents	Dissolved organic carbon	Mangrove cover
		Sea surface salinity		Microbe biomass and diversity (*emerging)
		Subsurface salinity		Invertebrate abundance and distribution (*emerging)
		Ocean surface heat flux		
		CROSS-DISCIPLINARY		
		Ocean colour	Ocean Sound	
EOVs under consideration by	DOOS	Ocean Bottom Pressure	Seafloor labile organic matter	Body size
		Seafloor Fluxes	Seafloor respiration	Seafloor sponge habitat cover
		Ocean Turbulence	Seafloor fluid and gas effluxes (focus on methane)	Connectivity of species
	3		Litter including microplastics	

Implementing a Deep Ocean Observing Strategy (iDOOS)

within the Global Ocean Observing System (GOOS)

Observing & Exploration Networks

Argo (Core, BGC, Deep)^{^,L} Challenger 150 (DOSI/SCOR)#

EMSO

GEO BON

GO-SHIPL

iAtlantic^L

MBON

NDSF/UNOLS*

NOAA Ocean Exploration~

OceanSITES+,~,L

OECI*

ONCL

OOI*,#,~

REV Ocean~

Schmidt Ocean Institute~

JTF SMART Cables

SOOS/SOCCOM

TPOS 2020

US-IOOS

Data & Modelling CI Networks

CCHDO*

CLIVAR GSOP

CLIVAR/OMDP & CMIPL

ECCO*,#

EMODnet#

ESIP/MDC*

Esri+,L

FathomNet

IODE/ODIS~

IRIS

ISA DeepData~

Mercator Ocean

OBISL

OBPS

OceanPredict

Seabed 2030~

Management & Policy Users

AtlantOS^L

DOSI#,*,L

GEO-BluePlanet

GOOS

Internat. CLIVAR

InterRidge~

ISA~,#

IUCN#,*

POGO

UN Decade⁺

UN Global Compact

U.S. CLIVAR

U.S. OCB

U.S. Sanctuaries

& Monuments

LEGEND

Affiliations
specified in recent
Accelnet Proposal

L Collaborators in *PI, Co-PI, Senior Personnel

*Voluntary collaborators

***Hosting ECRs**

#DOOS Affiliated Organization

~iDOOS Advisory Committee