The American Meteorological Society Committee on Radio Frequency Allocations

Jordan Gerth, AMS Committee Chair

With contributions from the committee
NAS CORF Meeting, Washington, DC, 17 May 2019

AMS Committee on RF Allocations

- Organizes members to review and coordinate on all matters of radio frequency spectrum management pertinent to the enterprise
- Contains academic, government, and private sector professionals with expertise in remote sensing, radar meteorology, satellite meteorology, systems engineering, telecommunications, and policy
- Reviews and revises the policy statement on radio frequency allocations for the Society

Committee Goals

- Increase membership awareness of spectrum management matters and their potential impacts on the weather, water, and climate enterprise,
- Develop coalitions with other entities to inform the public and policymakers on radio frequency interference and its consequences, and
- Provide subject-matter expertise on how changes in spectrum policy and allocations could affect the collection or delivery of meteorological, hydrological, and oceanographical data

Committee Activities

Encouraging ex parte briefings at FCC

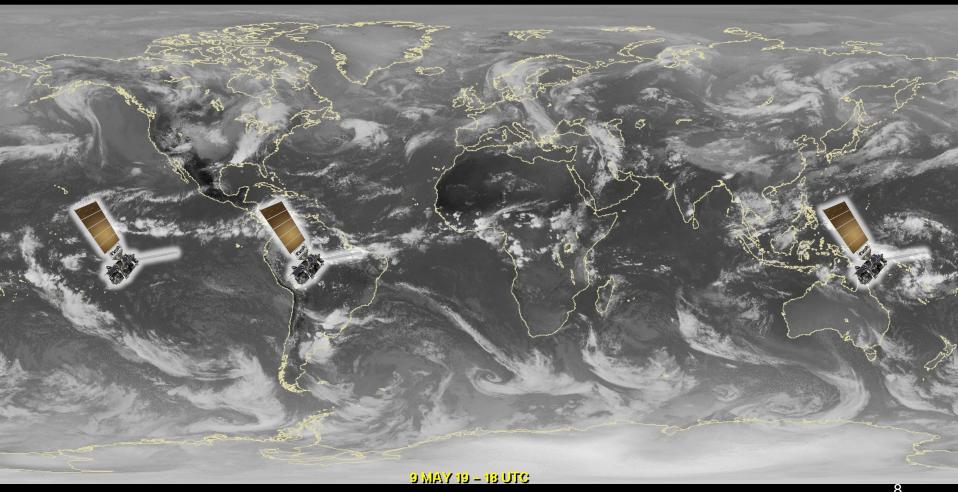
Filings in FCC dockets

Informational meetings with legislative staff

Op-eds and media interviews

Outreach to interested groups

AMS and member organizations have participated in relevant FCC proceedings on spectrum sharing



Committee Priorities

- 1675-1680 MHz (L band)
 - GOES-R data relay and image rebroadcast (Delivery)
- 3.7-4.2 GHz (C band)
 - NOAAPort (Delivery)
- 23.8/24 GHz (K band)
 - Passive microwave water vapor sensing (Collection)

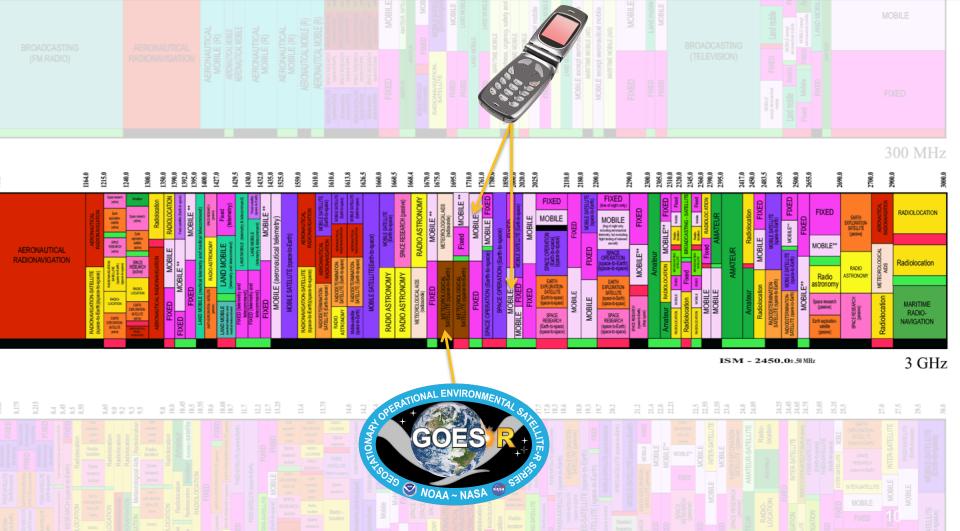
GOES-R data relay and image rebroadcast (Delivery)

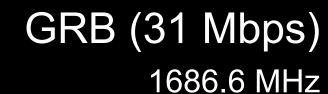
1675-1680 MHZ

UNITED

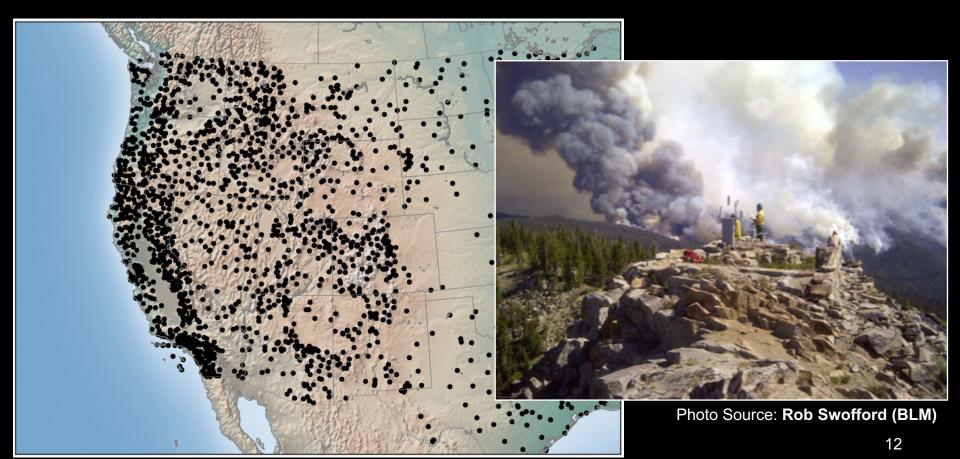
STATES

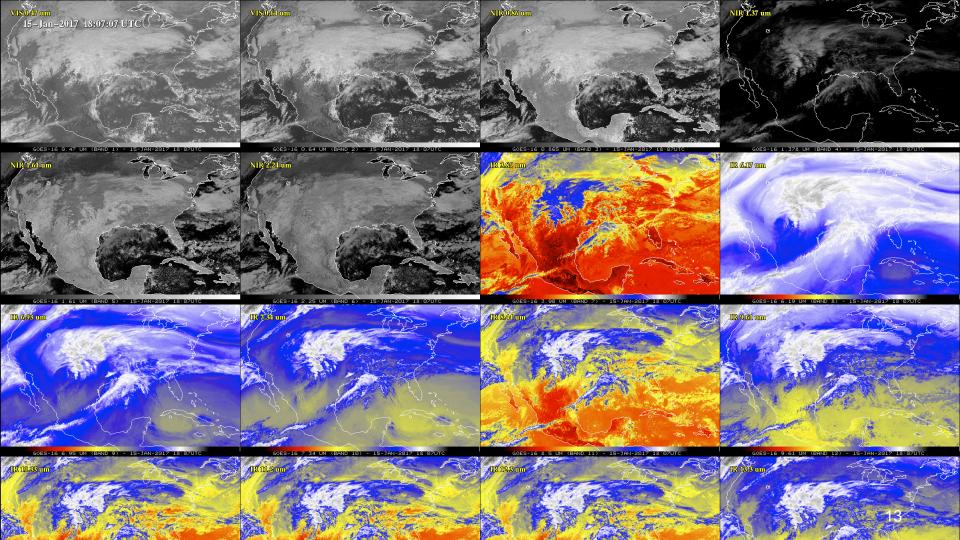
FREQUENCY


ALLOCATIONS


THE RADIO SPECTRUM

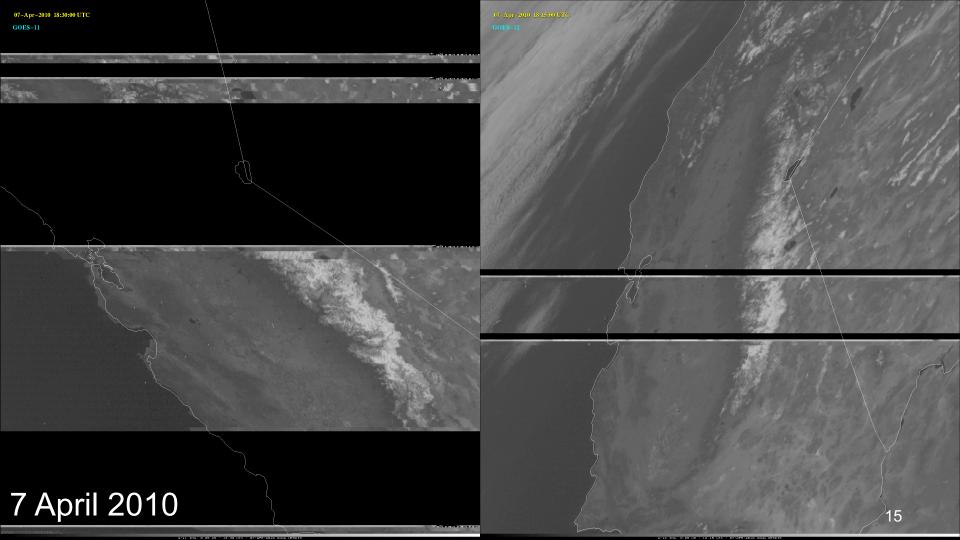
For each by the Experimental of Discounter, E.S. Commerced Enterly Office Named Investmental program Photology See (1991) CORN, Vandagine, DC case (20) 1 CORN.

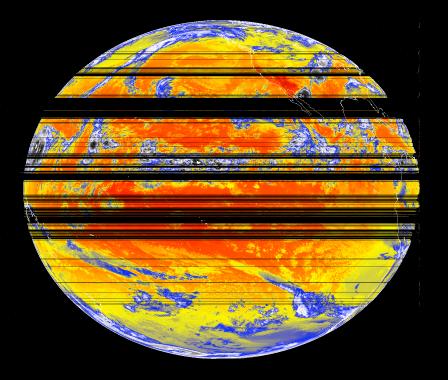


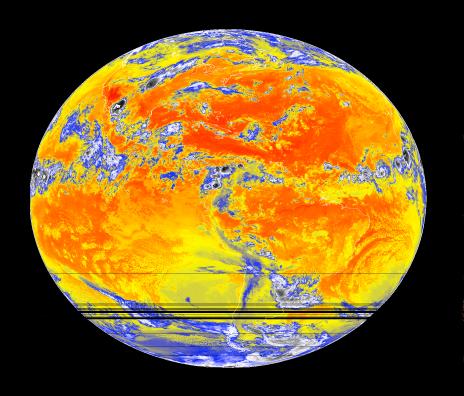

HRIT/EMWIN 1694.1 MHz

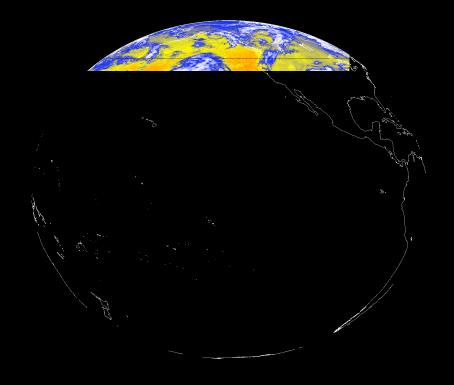
DCP Report Relay

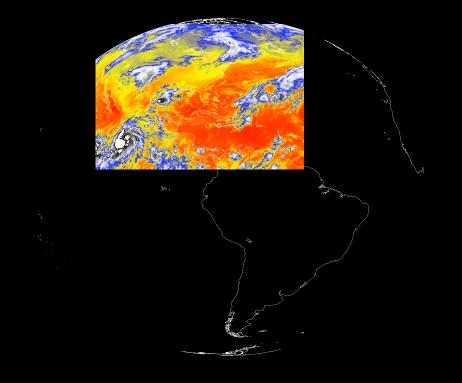
1679.9 MHz and 1680.2 MHz

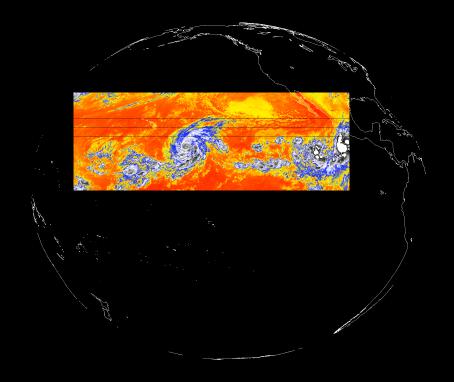

Remote Automatic Weather Stations (RAWS)

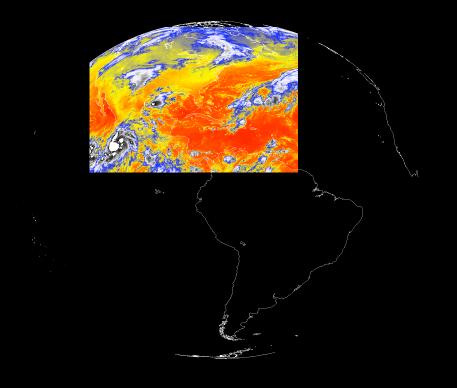





GOES ReBroadcast (GRB) Uses


- Primary data feed for many National Weather Service (NWS) "National" centers (e.g., National Hurricane Center and Storm Prediction Center)
- Important source of full-resolution imagery outside of the contiguous United States
- Supports television broadcasts and aviation, energy, ground transportation, and other weather-sensitive industry sectors
- Most timely and reliable source of satellite cloud/moisture imagery and lightning products





Proposed Sharing at 1675-1680 MHz

- A commercial provider has petitioned the FCC to share spectrum in 1675-1680 MHz with GOES-R downlinks
- Signal levels could be over ten million times stronger than those coming from satellite
- The FCC approved a Notice of Proposed Rulemaking (NPRM) at their 9 May 2019 meeting
- Past public comment periods (RM-11681) received objections from multiple members of the weather enterprise
 - New docket is 19-116
 - 30 days for comments, 30 days for reply comments after posted in Federal Register

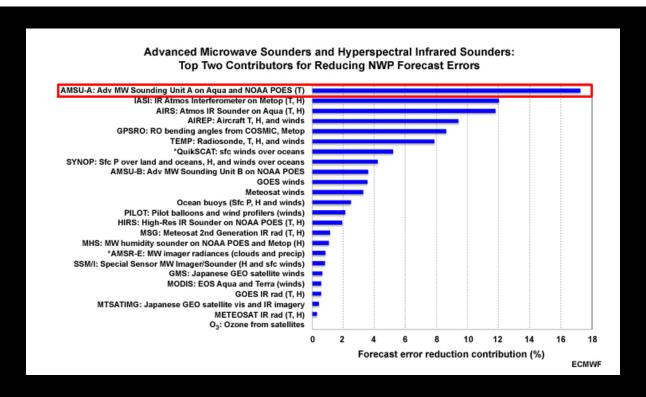
As it is today, the delivery of satellite weather imagery must always be timely, consistent, and reliable.

Full resolution Himawari-8 satellite imagery is currently provisioned via a cloud service, but technical access issues and insufficient bandwidth

have compromised the required "around the clock" availability for United States interests.

Comparison of GRB to Cloud Services

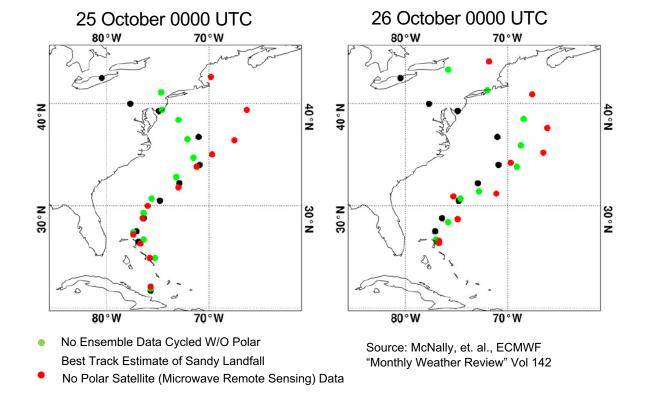
Service	Outage Allowed based on cloud service (30 days)	Service Availability Target (%)	Combined Availability with Terrestrial "Last Mile" Internet Delivery (%)
GOES-R GRB Broadcast	5 minutes	99.988%	N/A
Amazon EC2 Service	20 minutes	99.95%	99.93%
Amazon Simple Storage	40 minutes	99.9%	99.88%


Passive microwave water vapor sensing (Collection)

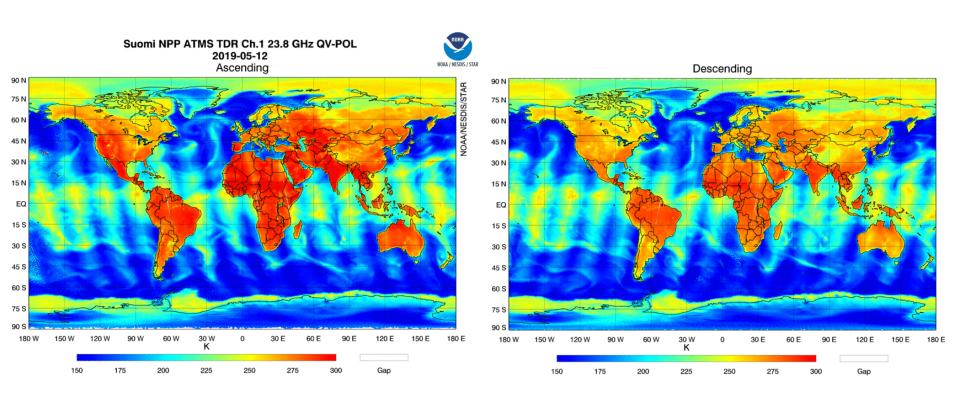
23.8/24 GHZ

Auction and Advocacy

- Recent U.S. 24 GHz auction
 - -20 dBW/200 MHz limit is too high for EESS applications
 - Disagreements between NOAA/NASA and FCC
 - More stringent limits proposed by other nations
- Limited peer-reviewed research on data assimilation and forecast skill impacts of individual passive microwave bands
 - High priority to examine impact per satellite (including orbit time), per band, per spatial extent, and per model configuration
- Advocating for lower emission limit and sensitivity studies
 - Informing WRC-19 and international limits
- Concern about three additional U.S. auctions in 37-47 GHz


Top Two Contributors for Reducing NWP Forecast Errors

Source: Dave Lubar


ECMWF Hurricane Sandy Predictions

Location of landfall with and without satellite microwave observations

	_	
	בַ	
	2	٤
	2	2
	-	
•	-	_
	a	b
	Š	Ś
	ົດ	o
1	÷	۱
٠		
	'n	ľ
	ç	
	٤	_
	Ξ	2
	Ç	2
(1	1

Passive Sensor Acronym	Instrument full name	Space Agency	Type of scanning		EESS(passive) bands (GHz)						
				Satellites	23.6- 24.0	31.3- 31.8	36- 37	50.2- 50.4	52.6- 54.25	86- 92	
ALTIKA	AltiKa Dual Band Radiometer	CNES	Along track	SARAL	Х		Х				
AMR	Advanced Microwave Radiometer	NOAA; EUMETSAT	Cross-track	JASON-2 & 3	Х						
AMR-C	Advanced Microwave Radiometer-C	NOAA; EUMETSAT	Cross-track	JASON-CS-A & B (Sentinel-6A & 6B)	Х						
AMSR	Advanced Microwave Scanning Radiometer	JAXA	Conical	ADEOS-2	Х		Х	Х	х	Х	
AMSR-2	Advanced Microwave Scanning Radiometer-2	JAXA	Conical	GCOM-W1 to W3	Х		Х			Х	
AMSR-E	Advanced Microwave Scanning Radiometer for EOS	JAXA	Conical	Aqua	Х		Х			Х	
AMSU-A	Advanced Microwave Sounding Unit - A	NOAA; NASA; EUMETSAT	Cross-track	NOAA-15, 18 & 19; AQUA; MetOp-A/ B/ C	Х	Х		х	Х	Х	
AMSU-B	Advanced Microwave Sounding Unit - B	NOAA	Cross-track	NOAA-15						X	
ATMS	Advanced Technology Microwave Sounder	NOAA	Cross-track	SNPP; JPSS-1 to 4	Х	Х		х	Х	Х	
CIMR	Copernicus Imaging Microwave Radiometer	ESA	Conical	CIMR			Х				
DREAM	Dual-channel Radiometers for Earth and Atmosphere Monitoring	KARI	Cross-track	STSat-2	Х						
GMI	GPM Microwave Imager	NASA	Conical	GPM Core Observatory	Х		Х			X	
JMR	JASON Microwave Radiometer	NASA	Cross-track	JASON-1	Х						
MADRAS	Microwave Analysis & Detection of Rain & Atmospheric Structures	ISRO	Conical	Megha-Tropiques	Х		X			Х	

Passive			Type of		EESS(passive) bands (GHz)					sive) bands (GHz)			
Sensor Acronym	Instrument full name	Space Agency	scanning	Satellites	23.6- 24.0	31.3- 31.8	36- 37	50.2- 50.4	52.6- 54.25	86- 92			
мнѕ	Microwave Humidity Sounding	EUMETSAT; NOAA	Cross-track	MetOp-A/B/C; NOAA-18 & 19						Х			
MIVZA	Microwave humidity sounder	Roscosmos	Conical	Meteor-3M	Х								
MSMR	Multi-frequency Scanning Microwave Radiometer	ISRO	Conical	OceanSat-1 (IRS-P4)	Х								
MTVZA	Imaging/Sounding Microwave Radiometer	Roscosmos	Conical	Meteor-3M	Х								
MTVZA-GY	Imaging/Sounding Microwave Radiometer - improved	Roscosmos	Conical	Meteor-M N1; Meteor-M N2-1 to -5	х	х	x		х	X			
MTVZAGY-MP	Imaging/Sounding Microwave Radiometer for Meteor-MP	Roscosmos	Conical	Meteor-MP N1 & N2	х	х	Х	Х	х	X			
MTVZA-OK (MW)	Combined Microwave-Optical Imaging/ Sounding Radiometer (MW component)	NSAU	Conical	SICH-1M	Х								
MW radiometer	Microwave radiometer {NOTE: similar to AMR, AMR-C}	NASA	Cross-track	SWOT	Х								
MWHS-II	Micro-Wave Humidity Sounder -2	СМА	Cross-track	FY-3C to -3H						Х			
MWI	Microwave Radiometer	NSOAS	Conical	HY-2A &-2B	Х		Х						
MWI	MicroWave Imager	EUMETSAT/ ESA	Conical	Metop-SG-B1/2/3	Х	х		Х	х	Х			
MWR	Microwave Radiometer	Roscosmos	Cross-track	Okean-O1-1 to 7; SICH-1	Х								
MWR	Micro-Wave Radiometer	ESA	Cross-track	ERS-2; Envisat	Х								
MWR	Micro-Wave Radiometer	ESA	Cross-track	Sentinel-3A & 3B	Х		Х						
MWR	Micro-Wave Radiometer	CONAE	Cross-track	SAC-D	Х								
MWRI-I	Micro-Wave Radiation Imager	СМА	Conical	FY-3A/B/C/D	Х		Х			Х			
MWRI-II	Micro-Wave Radiation Imager	СМА	Conical	FY-3F/G	Х		Х	Х	Х	X			

Source: Dave Lubar

Passive Sensor Acronym	Instrument full name	Space Agency	Type of scanning	Satellites	EESS(passive) bands (GHz)						
					23.6- 24.0	31.3- 31.8	36- 37	50.2- 50.4	52.6- 54.25	86- 92	
MWRI -III	Micro-Wave Radiation Imager	СМА	Conical	FY-3RM-1 & 2	Х		Х	Х	Х	Х	
MWS	Micro-Wave Sounder	EUMETSAT/ ESA	Cross-track	Metop-SG-A1/2/3	Х	Х		х	Х	Х	
MWTS-I	Micro-Wave Temperature Sounder - 1	СМА	Cross-track	FY-3A & -3B				Х	Х		
MWTS-II	Micro-Wave Temperature Sounder - 2	СМА	Cross-track	FY-3C & -3D				Х	Х		
MWTS-III	Micro-Wave Temperature Sounder - 3	СМА	Cross-track	FY-3E/F/G/H	Х	Х		Х	Х		
SSM/I	Special Sensor Microwave - Imager	DoD	Conical	DMSP-F08, F10 to F15			Х			Х	
SSM/T	Special Sensor Microwave - Temperature	DoD	Cross-track	DMSP-F04, F07 to F15				Х	Х		
SSMIS	Special Sensor Microwave - Imager/Sounder	DoD	Conical	DMSP-F16 to F20			Х	Х	Х	Х	
TMI	TRMM Microwave Imager	NASA	Conical	TRMM	Х						
TMR	TOPEX Microwave Radiometer	NASA	Cross-track	TOPEX-Poseidon	Х						
WindSat	WindSat	DoD	Conical	Coriolis	Х		Х				
WVR	Water Vapor Radiometer	NASA	Cross-track	GFO	Х						

Impacts Summary

- Most meteorological community use of spectrum not easily replaceable through other means
 - Unique observations based on physical properties of water vapor and other atmospheric molecules
 - Maintains high data rate and assures high reliability
- Continuing important observing capabilities through spectrum allocations maintains the value of our satellite constellations and quality of local and global weather forecasts
- More conflicts with 5G/IoT for the foreseeable future

```
The number of
     users and
     customers
of weather satellite imagery is not
     known, or
     fixed, or
     characterized.
```


The weather enterprise must better capture and communicate to regulators and legislators the relative value of disparate observation sets to meteorologists for prediction and warning purposes.

United States Senate WASHINGTON, DC 20510 May 13, 2019

The Honorable Ajit Pai

Chairman Federal Com 445 12th Stre Washington

Dear Chair

We write

GHz band the American people. We urge the Federal Commu could lead to dangerous impacts to any final licenses to winning bidders for future com spectrum until the FCC approves the passive band and Space Administration (NASA) and the Natio (NOAA) determine are necessary to protect crity water vapor needed to forecast the weather.

Commission

In March 2019, the FCC began auctioning sy band) for future commercial broadband use NOAA, and members of the American My that out-of-band emissions from future co would disrupt the ability to collect water (23.6 to 24 GHz) that meteorologists ry

Leadership in 5G networks and devices is undoubtedly critical to our economic and national Leadership in 5G networks and devices is undoubtedly critical to our economic and national security. However, it does not enhance America's place in this global race for 5G leadership to a control of the security of the security in international forume (such as at the security. However, it does not enhance America's place in this global race for 5G leadership to advocate for standards that do not pass scientific scrutiny in international forums (such as at the United Dadiocommunication Conference 2010) as the advocate for standards that do not pass scientific scrutiny in international forums (such as at the Real Page 1997) as the

In addition, we ask that you provide us with the following information by June 11, 2019:

addition, we ask that you provide us with the following information by June 11, 2019:

1. Provide any computer models, assumptions, and analysis that support the FCC's rule on fitting commercial broadhand transmissions in the 24 GHz hand and Provide any computer models, assumptions, and analysis that support the FCC's rule on chausthat it will not impact analizations in adjacent fragmany bands martinularly satellites. emission limits from future commercial broadband transmissions in the 24 GHz band and show that it will not impact applications in adjacent frequency bands, particularly satellite snow that it will not impact applications in adjacent frequency bands, particularly satisfactors of water vapor in the 23.8 GHz band that is so important to weather 2. Explain what the FCC intends to do if the International Telegon

3. Explain the reconciliation

"We write with a straight-forward request: Don't allow wireless companies to operate in a 24 GHz band until vital weather forecasting operations are protected."

Ranking Member Senate Committee on Finance at rely on this critical weather data.

at (202) 224-5244 or Peter True of Senator Cantwell's staff at (202) 224ncerns regarding this request, please contact Rachel Lang of

Maria Canques Maria Cantwell Ranking Member

Senate Committee on Commerce, Science

FCC.gov

19-116 RM-11681 GOES-R 1675-1680 MHz

17-183 **NOAAPort** 3.7-4.2 GHz

http://tinyurl.com/1675-1680-GOES

http://tinyurl.com/NOAAPort-spectrum

Community Challenges

- Explaining that weather forecasts improve annually, largely due to satellite observations
- Explaining that the atmosphere is emitting microwaves that are useful to sense
- Finding compelling examples of microwave passive remote sensing interference in imagery
- The speed of science and peer review is slower than current spectrum auctions
- Building consensus and coalitions

Questions?

Jordan Gerth

jordan.gerth@ssec.wisc.edu ametsoc.org/radio

Special thanks to...

Dave Lubar Renee Leduc Clarke

