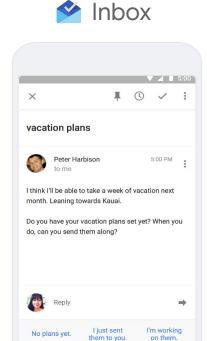
Machine learning to forecast and improve clinical outcomes and healthy aging using data collected during daily living

Alvin Rajkomar, MD

Google Health

Disclosures


Outline

What is machine learning?			
Elements of ML	Input Data with sensors		
	Output Data		
Putting it together	Cohorts		
	Getting the right labels		
	Creating interventions		
	Ensuring fairness		

What is machine learning?

Machine Learning is common outside healthcare

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

FRONTIERS IN MEDICINE

Machine Learning in Medicine

Alvin Rajkomar, M.D., Jeffrey Dean, Ph.D., and Isaac Kohane, M.D., Ph.D.

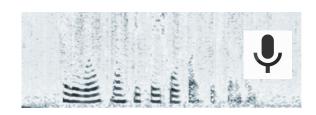
Clinical Review & Education

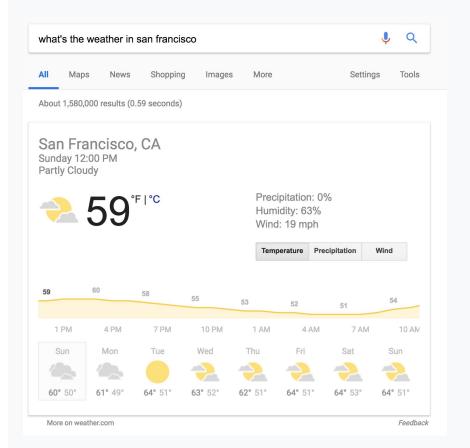
JAMA | Users' Guides to the Medical Literature

How to Read Articles That Use Machine Learning Users' Guides to the Medical Literature

Yun Liu, PhD; Po-Hsuan Cameron Chen, PhD; Jonathan Krause, PhD; Lily Peng, MD, PhD

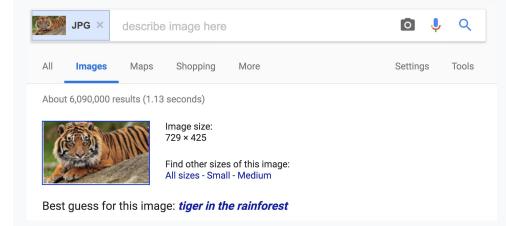
Input Output


Input Output



Input

Output



Input

Output

Rules and contingencies

Spam the old way:

Write a computer program with **explicit** rules to follow

if email contains V!agrå

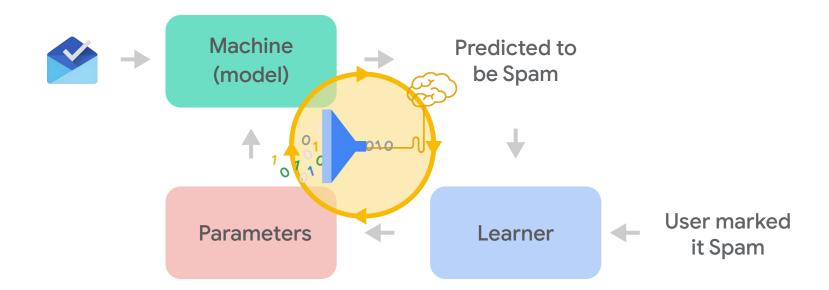
then mark 'is spam';

if email contains ...

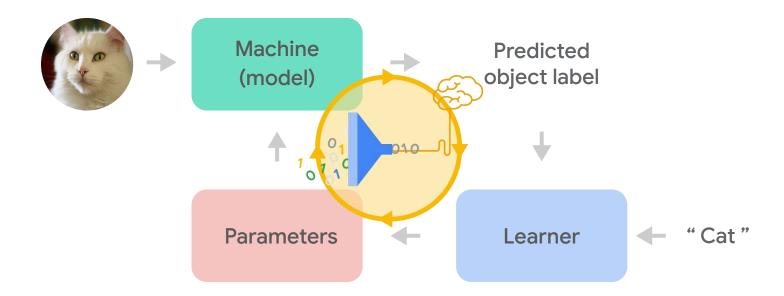
if email contains ...

Learning from data

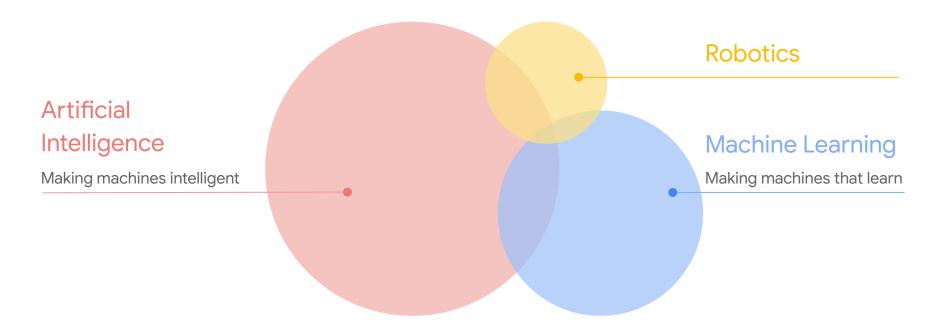
Spam the new way:


Write a computer program to *learn* from examples

try to classify some emails;


change self to reduce errors;

repeat;


/ Machines Learning by Example

/ Machines Learning by Example

A tale of two disciplines

- Traditional Al Systems are *programmed* to be clever.
- Modern ML-based Al systems to learn to be clever.


/ Why widespread use of ML is occurring now

Training examples

Algorithms + tools

Computational resources

Creativity + ingenuity

What do you need to build a model?

Input Data - Terminology

Wearables

Movement (activity tracking) Electrical activity (EKG)

mHealth (phone)

Ambient sensors

Cameras

Microphones

Keyboards on phones

Examples of Sensors

_	<u> </u>		
Category of Measurement	Examples of specific sensors	Examples of Measurements	Derived Measurements
ata measured from wearable	sensors		
Inertia	Accelerometer, Gyroscope, Magnetometer	Linear and angular motion	Types of activity (e.g. walking), ste length, falls
Light transmittance through skin	Photoplethysmogr aphic (PPG)	Oxygen saturation, heart rate, heart rate variability	Measurements of cardiovascular health
Electrical activity	Electrodes	Electrocardiogram s (EKG),	Heart rhythms, sleep states,
		electroencephalogr ams (EEG), Galvanic skin responses	emotional state
Mechanical movements	Piezoelectric sensors	Pulsations on skin from heart beats	
Chemical analytes on skin	Potentiometric and amperometric devices	Glucose, lactate, sodium measurements in sweat	
Temperature	Thermistor	Body temperature	Elevated risk of infection 41
Location	Global position satellite measurements	Movement	Location entropy indicate depression

	Video	Cameras	Pixels	Activity classification in the
				home, vital signs ⁴² gait
	Audio	Microphones	Waveforms	Respiratory status from breath sounds, emotion from voice
computing of	Interactions with computing devices	Smartphones, Tablets, Keyboards	Patterns of typing and scrolling	Fine motor control that tracks development of Alzheimer disease. ³⁸ Digital phenotypes for psychiatric diseases ³¹
	Smart devices	Smart pill caps	How often medication bottles are opened	Medication adherence

Input Data - Terminology

Clinical Studies
Predictors
Covariates

Machine Learning Features

Input data (features): sequence of sensor data

time

Input Data - Terminology

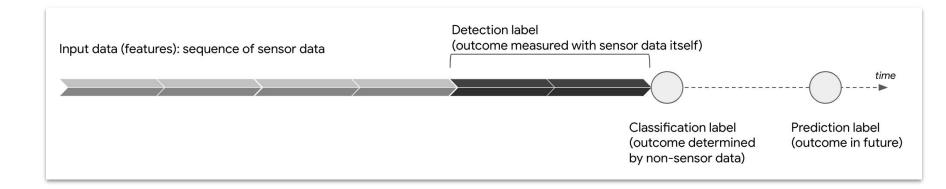
Passive

No additional interaction necessary *Easier to collect, less standard*

Active

Interaction with device

E.g. Start a six minute walk test


E.gl Answer patient reported outcome

Harder to collect, more standard

Output Data - Terminology

Clinical Trials - Outcomes
Primary Outcomes (usually major clinical event)
Secondary Outcomes

Machine Learning - Labels, Output
Detection
Classification
Prediction

Isn't this all very straightforward?

In-person discussion No further slides