

November 2019

Sonde is unlocking voice as a vital sign and predictor of health

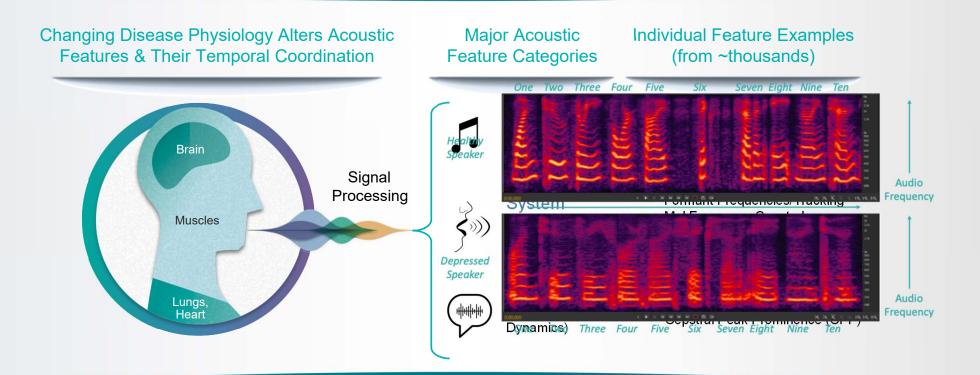
Ability to Understand and Respond to Just A Few Seconds of Speech Is Rapidly Changing Our World

Automatic Speech Recognition (Focus since ~1952)

LINGUISTIC FEATURES

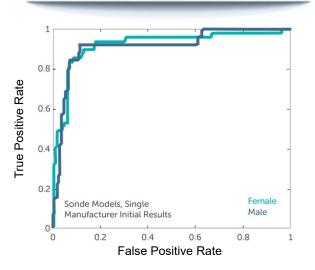
VOCAL BIOMARKERS

Automatic Health Recognition

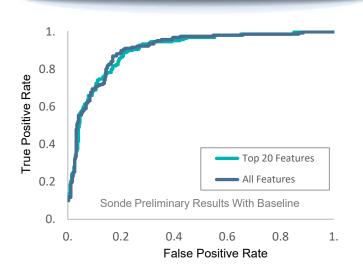


CLINICAL GRADE HEALTH DATA Voice assistants that automate routine tasks

Voice assistants detect health changes to mediate early and efficient care access



Technology Foundation: Objective Characterization of Involuntary Acoustic Changes That Accompany Changes In Health


Sonde Has Real-World Proof of Feasibility For Measuring a Range of Health Conditions Using Short Smartphone Voice Samples

Depression Screening Example

Performance on par with PHQ-9 – standard clinical screening instrument (*smartphones*, 6 seconds of speech, <u>no baseline</u>, >4K US individuals)

Sonde Sleepiness Screening Example

With a few training sessions, feasible to accurately predict when KSS \geq 7, (Best-performing cued sample based on typical voice assistant command)

Sonde Vocal Biomarker Performance Enables Powerful Augmentation of Depression Screening Capabilities

Assuming a population with 10% prevalence for PHQ-9 ≥ 10

	Sensitivity	Specificity	Accuracy	-	oression ID Jusion Matrix
PHQ-9 (Kroenke, et al., 2001)	88%	88%		≤ 9 ≥10	90 79 11 10 1 9
Sonde Vocal Biomarkers (Huang, et al., 2019, in press)	68.5%	71.9%	71.4%	≤ 9 ≥10	90 65 25 10 3 7

Identify 9 of 10 depressed individuals if *employed and answered honestly*

Identify 7 of 10 depressed individuals correctly with lower friction and greater objectivity

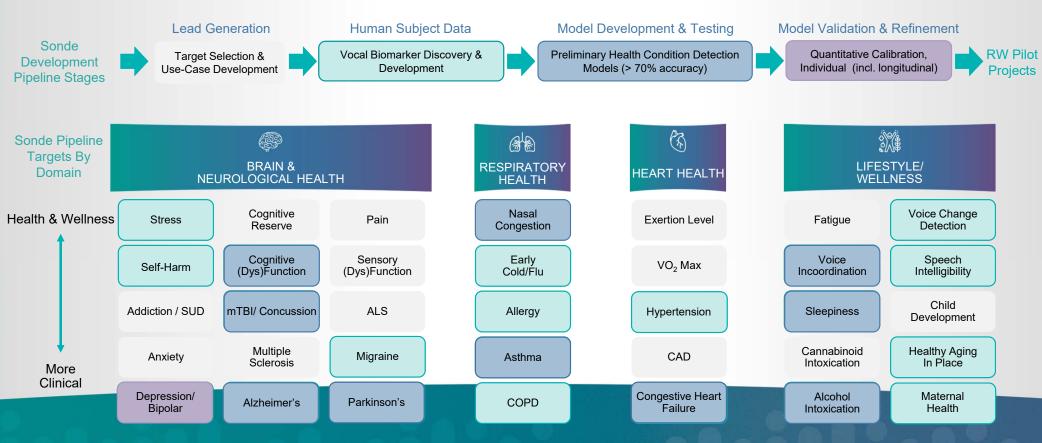
This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAFFC.2019.2944380

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Vocal biomarker performance improving and can be combined with other assessments

Investigation of Speech Landmark Patterns for Depression Detection


Zhaocheng Huang, Member, IEEE, Julien Epps, Member, IEEE, Dale Joachim, Member, IEEE

Sonde's Depression Risk Level Estimation Based on PHQ-9 Scores Has High Accuracy

Low, Med, High strength corresponding to PHQ-9 ranges						
	Predicted High (17-27)	Predicted Moderate (10-16)	Predicted Low (0-9)			
Actual High (17-27)	9%	3%	1%			
Actual Moderate (10-16)	12%	18%	12%			
Actual Low (0-9)	7%	8%	29%			

Deployed initially on-phone testing with 791 individuals. Already generating good initial confusion matrix performance. Next steps: 0-100 calibration, time-based consensus scoring vs. single file scoring

Potential of Vocal Biomarker Platform Reaches Far Beyond Depression and Sleepiness

Example: Potential for Sonde Vocal Biomarkers to Augment Measurement Capabilites For Monitoring Parkinson's Disease Symptoms & Progression

INTERSPEECH 2015

Segment-dependent dynamics in predicting Parkinson's disease

James R. Williamson¹, Thomas F. Quatieri¹, Brian S. Helfer¹, Joseph Perricone¹, Satrajit S. Ghosh², Gregory Ciccarelli¹, Daryush D. Mehta

MIT Lincoln Laboratory, Lexington, Massachusetts, USA ² Massachusetts Institute of Technology, Cambridge, Massachusetts, USA jrwell.mit.edu, quatierieil.mit.edu, brian.helfereil.mit.edu, joey.perriconeell.mit.edu
 satra@mit.edu, gregory.ciccarelliell.mit.edu, daryush.mehta@ll.mit.edu Proofs-of-Concept: show strong correlation factors for UPDRS score prediction with further potential to distinguish impact of non-motor PD symptoms on speech

Abstract

Early, accurate detection of Parkinson's disease may aid in possible intervention and rehabilitation. Thus, simple noninvasive biomarkers are desired for determining severity. noninvarte orionizates are desirated for determining severity.

In this study, a novel set of acoustic speech biomarkers are introduced and fused with conventional features for predicting clinical assessment of Parkinson's disease. We introduce acoustic biomarkers reflecting the segment dependence of acoustic dominates restricting the segment operatures or changes in speech production components, motivated by disturbances in underlying neural motor, articulatory, and prosodic brain centers of speech. Such changes occur at phonetic and larger time scales, including multi-scale between the control of the control of the control of the control of the scales, including multi-scale perturbations in formant frequency and pitch trajectories, in phoneme durations and their frequency of occurrence, and in features based on a neural computational model of speech production, the Directions into Velocities of Articulators (DIVA) model. The database used is from the Interspeech 2015 Computational Paralinguistic Challenge. By fissing conventional and novel speech features, we obtain Spearman correlations between predicted scores and clinical assessments of r = 0.63 on the training set (four-fold cross validation), r = 0.70 on a held-out development set, and r = 0.97 on a held-

Index Terms: Parkinson's disease, speech biomarkers, phoneme and pause duration, articulatory coordination, neural computational models of motor control

1. Introduction

Parkinson's disease is a neurological disorder with associated progressive decline in motor precision and sensorimotor integration stemming presumably from the basal ganglia. In this disorder, there is a steady loss of cells in the midbrain include imprecise and incoordinated articulation, monotonous and reduced pitch and loudness, variable speech rate and rushes of breath and pause segments, breathy and harsh voice quality, and changes in intonation and rhythm [2][3][4][5][6].

"This work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force contract #FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United

2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII)

Vocal markers of motor, cognitive, and depressive symptoms in Parkinson's disease

Kara M. Smith Department of Neurology University of Massachusetts Medical School Worcester, MA USA kara smith@umassmemorial.org

jrw@ll.mit.edu, quatieri@ll.mit.edu

James R. Williamson, Thomas F. Quatieri

Bioengineering Systems and Technology Group

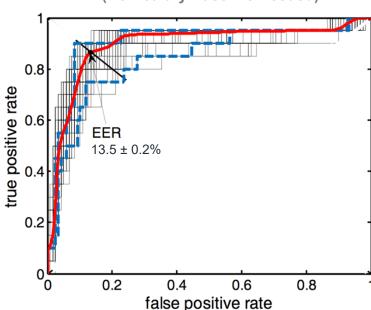
MIT Lincoln Laboratory

Abstract—Patients with Parkinson's disease (PD) often suffer from cognitive impairment and deprecises in addition to motor dysfunction. These son-motor symptoms may be challenging to dispose and the control of the co


Parkinson's disease (PD) is the second most common neurodegenerative disease and affects one milion Americans. Although PD is most often characterized by its motor symptoms,

mortality [3-5]. Non-motor symptoms may also interact with the motor features of PD. Depression causes psychomotor slowing and flat affect that mimics the characteristic bradykinesia and facial masking that occurs in PD. Patients with PD often have a monotonous voice with diminished prosody, which shares features with voice changes in depression [6, 7]. Likewise, cognitive change in PD often involve executive dysfunction, which can impact verbal fluency [8], as well as gait and balance [9]. As a result, current clinical assessment tools are unable to clearly distinguish the impact of these non-motor symptoms and motor symptoms on global function leading to under-diagnosis and under-treatment of nonnunction resuming to under-tangenosis and unner-treatment or non-motor symptoms [10]. Clinicians need objective and precise tools to assess non-motor symptoms in PD. Vocal markers could be a powerful tool to meet these challenges and to help disentangle the underlying neurophysiology of mood, cognitive, and motor

Although there has been growing interest in using automated voice analysis to detect and monitor PD disease status [11-18], this body of work has focused largely on motor impairments, which are impairments are manifested in imprecise articulation, monotonous and reduced pitch and volume, variable speech rate and pause segments, breathy and harsh voice quality, and changes in intonation and rhythm [11]. Almost all patients with PD experience motor vocal changes over their disease course. Vocal markers based on these changes can distinguish PD from healthy controls [12-14,18] and classify PD patients by disease severity [14-17,19]. Moreover, vocal


Opportunity for rapid scaling, validation, and commercialization using Sonde's platform

Example – Potential for Sonde Vocal Biomarkers to Augment Screening for Mild Cognitive Impairment & Early AD Dementia

Voice-Only ML Prediction Of Cognitive Impairment vs. Clinical Screening (No Healthy Baseline Needed)

INTERSPEECH 2015

Cognitive impairment prediction in the elderly based on vocal biomarkers

Bea Yu1, Thomas F. Quatieri 1, James R. Williamson 1, James C. Mundt 2

¹MIT Lincoln Laboratory, Lexington, Massachusetts, USA
²Center for Psych Consulting, USA

[bea.yu,quatieri,jrw]@11.mit.edu, jmundt@telepsychology.net

Abstract

Remote, automated cognitive impairment (CI) diagnosis has the potential to facilitate care for the elderly. Speech is easily collected over the phone and already some common cognitive tests are administered remotely, resulting in regular audio data collections. Speech-based CI diagnosis leveraging existing audio is therefore an attractive approach for remote elderly cognitive health monitoring. In this paper, we demonstrate the predictive power of several speech features derived from remotely collected audio used for common clinical cognitive testing. Specifically, using phoneme-based measures, pseudosyllable rate, pitch variance, and articulatory coordination derived from formant cross-correlation measures, we investigate the capability of speech features, estimated from paragraph-recall and animal fluency test speech, to predict clinical CI assessment. Using a database consisting of audio from elderly subjects collected over a 4 year period, we develop support vector machine classification models of the CI clinical assessments. The best performing models result in an average equal error rate (EER) of 13.5%.

Index Terms: mild cognitive impairment, motor coordination, vocal biomarkers, formant frequencies

1. Introduction

Constraints on elderly mobility and human resources for elder care have spawned an active area of research in technology to enable remote, automated monitoring as part of an assisted The Home Based Assessment (HBA) study of the Alzheimer's Disease Cooperative Study (ADCS) was a 4-year longitudinal study evaluating multiple technology platforms for administering home-based assessment measures outside of clinic visits [1]. A speech-enabled, computer-automated telephone system using interactive voice response (IVR) technology was one of the in-home platforms deployed in the HBA study, and was the source of data for the analysis reported below. The audio data was collected for linguistic content based cognitive testing. We demonstrate here that non-linguistic content extracted from audio during speech provides useful information for cognitive assessment.

Certain non-linguistic vocal features have been shown to change with a subject's mental condition and emotional state, such as depression. These features include characterizations of prosody (e.g., fundamental frequency and speaking rate), spectral representations (e.g., mel ceptars), and glottal excitation flow pattents, such as timing jutter, amplitude shimmer, and aspiration [2–7]. Discovering the coupling between speech, language, and cognitive functioning status entails determining correlations between vocal features, reflecting prosody, voice quality, and linguistic content, and varying degrees of cognitive impairment.

Several recent papers explore using speech features for predicting dementia and mild cognitive impairment (MCI). Statt et al., for example, achieve an 18% +/- 6% equal error rate (EER) for MCI/dementia prediction using speech features from Greek speech [8]. In [9]. Statt et al. achieve a 20% +/- 6% EER for MCI prediction using a different dataset in

Careful Technology Progression to Manage Security, Privacy, and ELSI

Cued Mode

- Direct Sonde access to device audio
- Familiar voice assistant skill UX
- Tailored elicitations for enhanced performance

When a user repeats words requested by the appwords for six seconds, for example, "Pataka, pataka, pataka..."

Screening, personal exploration, novelty & social, etc

Command Mode

- Opt-in
- All voice commands available for analysis
- Special controls, e.g. pause/mute timer, etc.

When the user mentions common commands like, "Hi Bixby, What's the weather like today?"

Tracking, monitoring, health cues & alerts, patient management

Always Sensing Mode

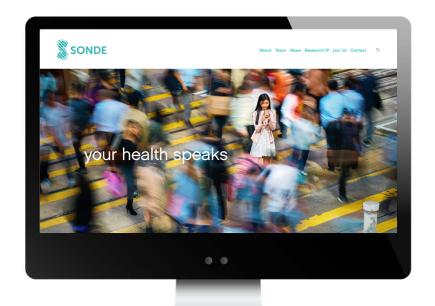
- Opt-in or dedicated/premium device
- Embedded-mode-only option (e.g. all results local)
- New "wake-to-health" UX opportunities

The app is listening for situations that require real-time tracking

Passive, persistent, and proactive health experiences (and health data volume/velocity)

As Voice Assistants Begin Moving Beyond Speech Recognition, Sonde Health is Building a Unique Platform For Addressing Broad Home Health Needs

Amazon's initial foray beyond speech recognition and into acoustic event detection is driving synergistic voice product integration opportunities for home security systems (~\$34 billion global market)



Sonde's opportunity: Create voice enabled automatic alerting systems for important health conditions (global health spend \$7.7 trillion+)

Sonde Acoustic Health Event Detection Can Transform the Way Mental and Physical Health is Monitored and Managed

Thank You

sondehealth.com

MP Healthcare Venture Management, Inc.

The New York Times

The Boston Blobe

The Telegraph

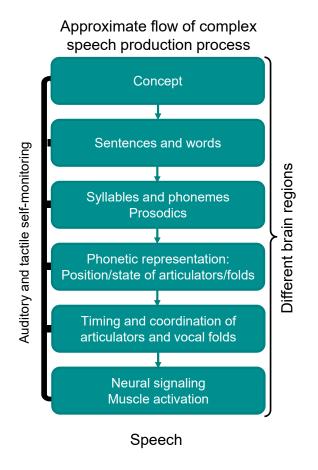
THE WALL STREET JOURNAL.

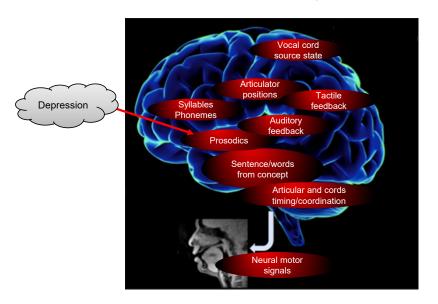
THE SUNDAY TIMES

STAT

SCIENTIFIC AMERICAN

MIT Technology Review





Appendix: Sonde's Technology Enables Objective Characterization of Involuntary Acoustic Changes That Accompany Changes in Health

Broad Distribution of Core Speech Network

Disease mechanisms produce distinctive patterns of physiologic and neurologic disruption, produce speech modulations that may be similarly distinctive