NATIONAL Sciences Engineering Medicine

Revisiting the *Barriers and Opportunities* Study:
Continued Efforts to Improve Pathways to Undergraduate
STEM Degrees

Roundtable on Systemic Change in Undergraduate STEM Education

Land Acknowledgement

Although we are gathering virtually today, we acknowledge that the National Academies buildings sit on the traditional land of the Nacotchtank and Piscataway People past and present, and honor with gratitude the land itself and the people who have stewarded it throughout the generations. We honor and respect the enduring relationship that exists between these peoples and nations and this land. We thank them for their resilience in protecting this land; and aspire to uphold our responsibilities to their example.

Welcome from the Roundtable on Systemic Change in Undergraduate STEM Education!

OUR MISSION

With an intentional focus on diversity, equity, and inclusion, the Roundtable on Systemic Change in Undergraduate STEM Education works to advance efforts to improve learning experiences for undergraduate students in STEM courses and programs.

The Roundtable helps the field anticipate how best to serve learners considering the rapidly changing social and economic environment, including dramatic shifts in student demographics, modes of learning, technology, STEM knowledge, commitments to equity and inclusion, and how we think about work.

Roles of the Roundtable

Levers for Change

Identify actions to spur systemic change.

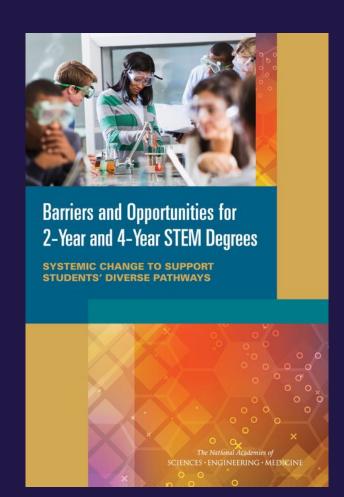
Share high quality information, models, and other evidence-based practices.

Hub for Knowledge

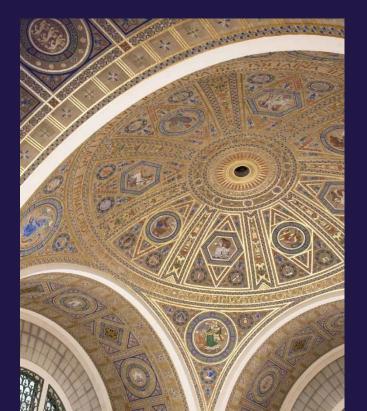
New Projects

Develop work in areas where additional evidence and guidance are needed.

Imagine what society will look like. Analyze the implications for STEM Education.


Futuristic Thinking

Preview of Today's Panels


- Importance of community colleges
- Importance of transfer policies
- Importance of supports for transfer students

Overview of the **Barriers and Opportunities** Report

Reflections on Barriers and Opportunities and the Current State of **Student Experiences** Navigating STEM Degrees

Reflections on *Barriers and Opportunities* and the Current State of Student Experiences Navigating STEM Degrees

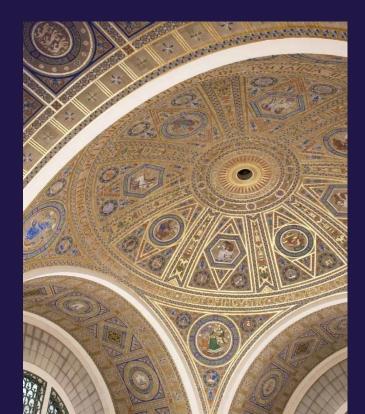
Moderator:

Susan Rundell Singer
St. Olaf College
(Roundtable Member)

Panelists:

Sylvia Hurtado University of California, Los Angeles

Rajeev Darolia
U.S. Department of
Education (on leave
from University of
Kentucky)


Shirley Malcom

AAAS

Josh Wyner
Aspen Institute

Research on Transfer Students and Transfer Models

Research on Transfer Students and Transfer Models

Moderator:

Mark Mitsui
Portland Community
College (Retired)
(Roundtable Co-Chair)

Panelists:

Davis Jenkins Teachers College, Columbia University

Bruk Berhane Florida International University

Lois Miller University of Wisconsin–Madison

Barriers and Opportunities to Strengthen STEM Transfer Pathways for Community College Students

NASEM Roundable on Systemic Change in STEM Education

Davis Jenkins

Senior Research Scholar and Research Professor in Education and Social Policy

Tracking Transfer: Community College and Four-Year Institutional Effectiveness in Broadening Bachelor's Degree Attainment

Community College Tracking Transfer Metrics

Percent of CC entrants who transferred (ever enrolled at any four-year)

Percent of transfers who completed at the CC

Percent of CC entrants who transferred and completed a bachelor's

Transfer-out Rate

Community college FTIC students, Fall 2015 (n = 670K) Transfer with Award Rate

Transfer-out Bachelor's Completion Rate

Cohort Bachelor's Completion Rate

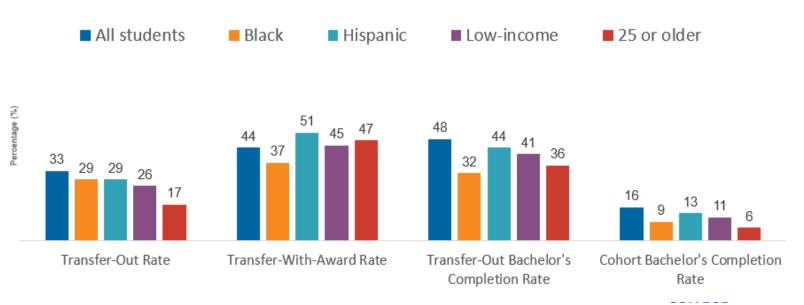
The promise of transfer as an accessible and affordable route to a bachelor's remains unfulfilled.

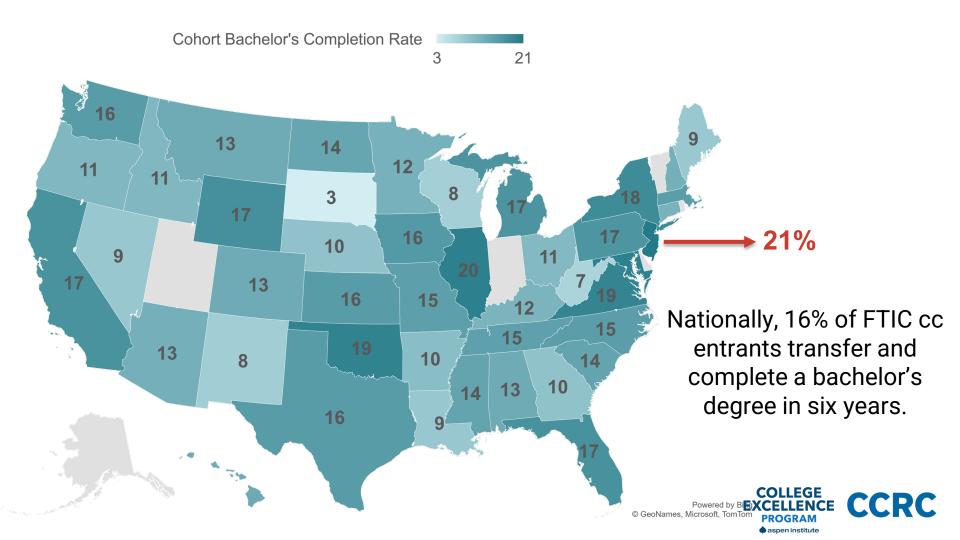
of community college students want a bachelor's degree

s ion

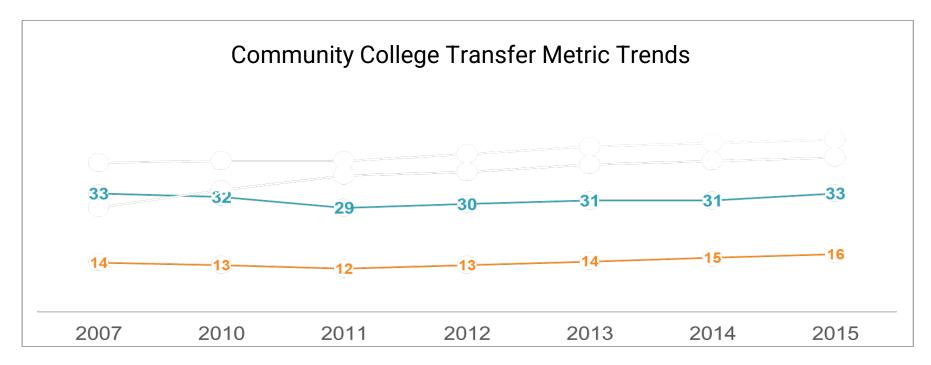
of community college students transfer to a four-year institution

of community college students will graduate with a bachelor's degree within six years of starting college

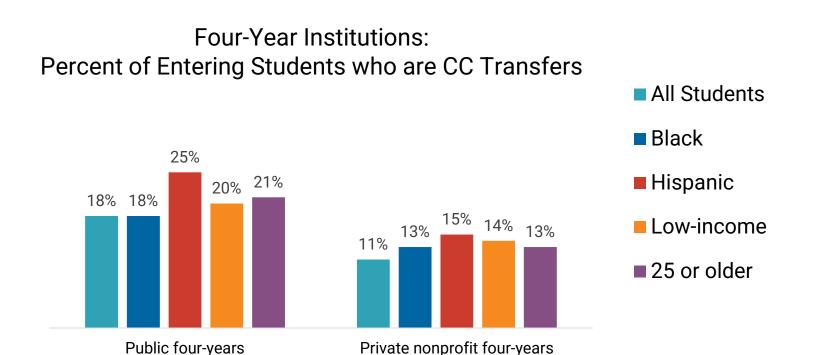




Transfer outcomes are even lower among low-income, Black, Hispanic and older students

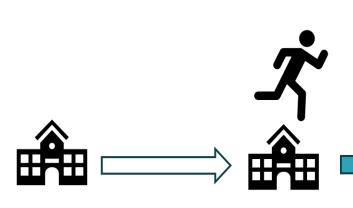

Six-Year Transfer Outcomes, Fall 2015 Community College Entrants

A big reason transfer bachelor's completion is low is that transfer-out rates have been flat since 2007



Transfer-out rate ———

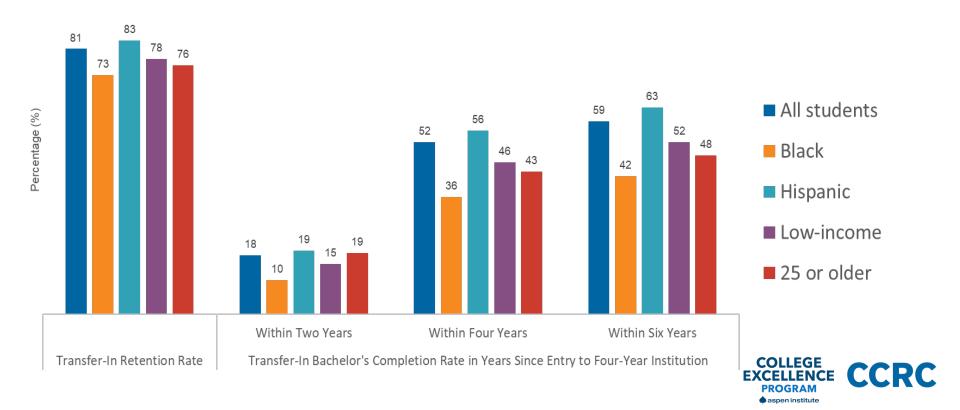
Cohort bachelor's completion rate

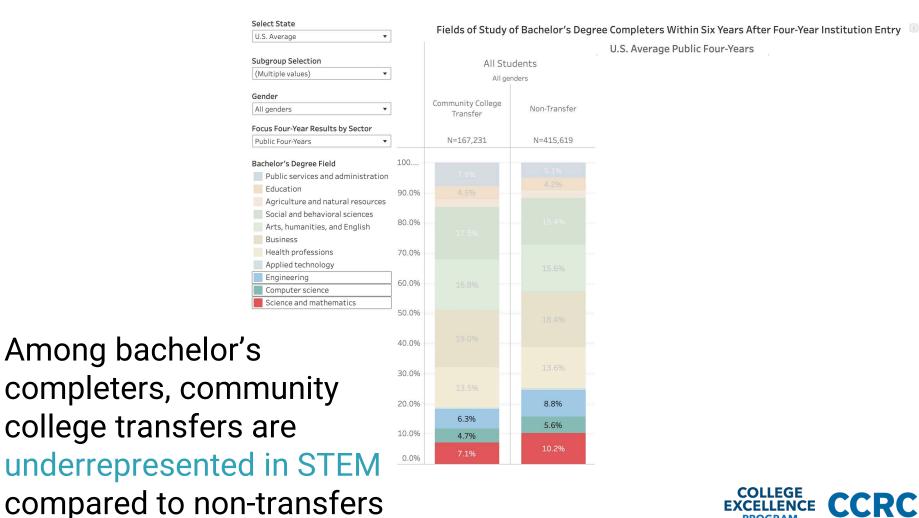


Community college transfer pathways are a major source of enrollment and diversity at four-year institutions.

Four-year Institution Post-Transfer Metrics

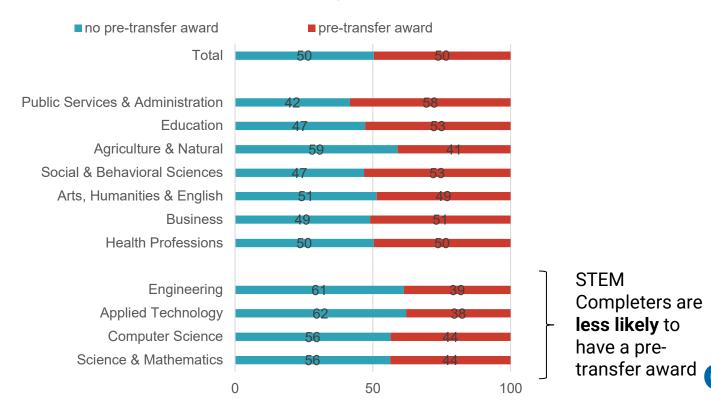
Percentage of students retained at the four-year institution into the second year after transferring

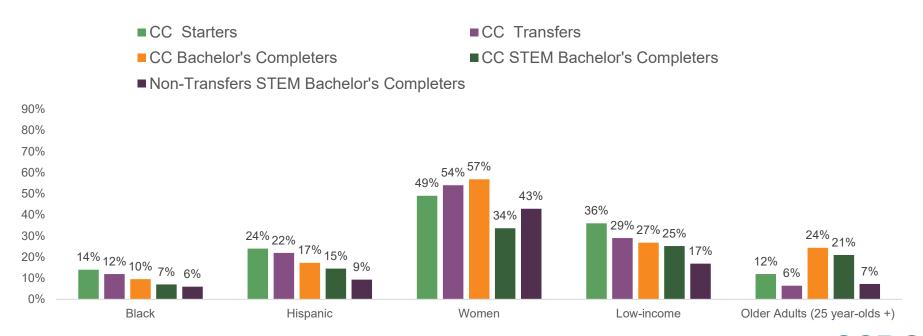

Percentage of students who complete a bachelor's degree at the receiving four-year institutions within two, four, and six years.


Four-Year Institutions' CC transfers entrants in 2015-16 (n = 396k) Transfer-in retention rate

Transfer-in bachelor's completion

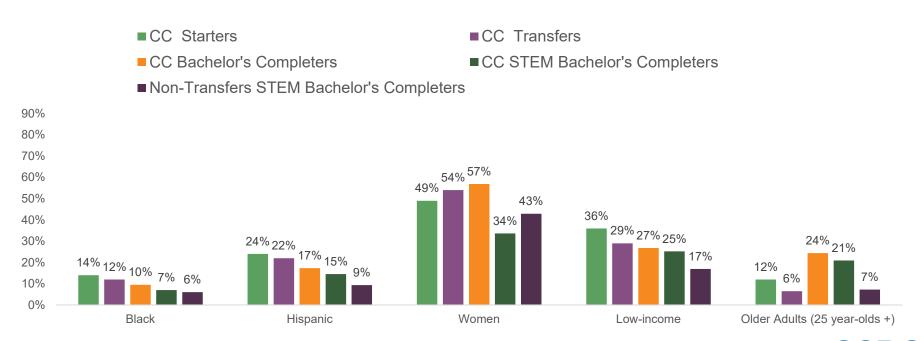
Most community college transfers persist into their second year, but only about half complete in four years.




COLLEGE aspen institute

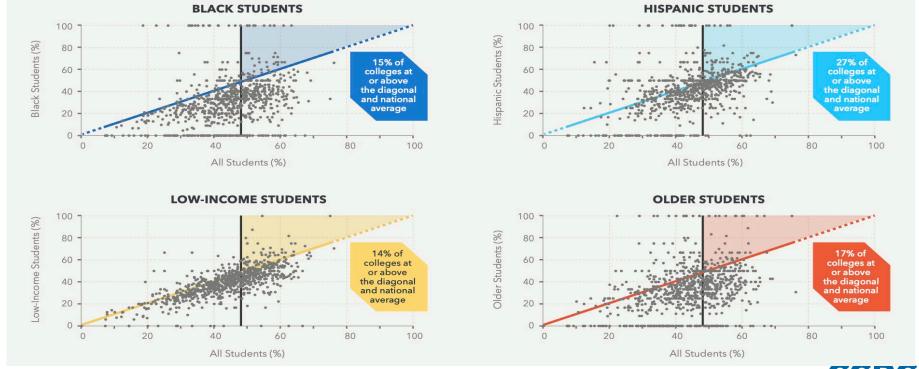
The pathway to a bachelor's degree in STEM is less likely to include a pre-transfer award

CC Bachelor's Completers by Field



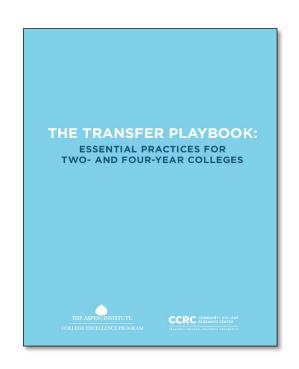
CC STEM completers tend to be less diverse than CC bachelor's completers, but more diverse than non-transfer STEM completers

Women are underrepresented among CC STEM bachelor's completers, relative to non-transfer STEM completers



CCRC research highlights the many college-created systemic barriers to transfer student success.

- Students not helped to explore career/college options, and develop a plan—and their progress isn't monitored
- Transfer paths unclear, "get your gen eds out of the way" misleads students
- Early momentum matters: Too many entering students weeded out through dev ed, poorly resourced instruction in uninspiring gen ed; too few experience high-quality active learning
- Unreceptive transfer cultures upon arrival at the fouryear, exclusionary practices limit access to HIPs
- Dual enrollment offerings not designed to help students actively explore interests and develop goals for college and careers



Some cc-university partnerships have achieved more equitable outcomes for students from underserved groups.

High-performing transfer cc and university partners collaborate to eliminate systemic barriers.

- Backward map paths to transfer in majors <u>and</u> career opportunities in fields of regional importance
- Help all new students explore career/academic options and develop a full-program plan by end of term 1
- Monitor student progress on plan and share data on prospective students
- Track transfer outcomes disaggregated by race/ethnicity, income, sending/receiving institution, and student major
- Embed active/experiential learning into every program
- ✓ Build pathways into high schools, starting with dual enrollment

CCRC

college credits

in year 1

Metrics for Improvement: Momentum as Leading Indicator

Early Academic Momentum

Gateway Course Momentum Completed college **Credit Momentum** math/English in year 1 Completed 24+

Persistence and **Course Completion**

Fall-Spring Persistence

Course completion rate in year 1

RESEARCH BRIEF

Measuring STEM Momentum

Early Indicators of STEM Transfer Success for Community College Students

By John Fink, Taylor Myers, Daniel Sparks, and Shanna Smith Jaggars

moreorteen metrics have belowd these colleges truck innervements and provide formative aspessments of student success reforms associated with the guided

However, early momentum metrics are program agnostic. In one example of a widely used metric, first-year credit accumulation, a student may earn a substantial number of college credits in their first year, but those credits may or may not apply to a degree in their field of interest. This is a substantia

student success requires the involvement of faculty and academic administrators within enecific academic areas: those etaluholders often want to know whether or how reforms are benefitting students within their own programs (Satley et al., 2015).

This brief summarizes findings from a study in which we examined postsecondary college transcript. and degree records from hundreds of this words of transfer-intending community college students in three-states. Our aim was to-explore and test metrics that could be useful in the formative assessment of efforts to improve STEM transfer outcomes. Our findings show that first-year completion of a calculus course and first-year completion of a (non-math) science, technology, or engineering SITE) course specified on statewide STEM transfer pathways are both reliable indicators of subsequent STEM transfer suppress aproes a wide range of state and institutional contexts. These two metrics are also robust pendictors of success among subgroups of students by napa/athnicity and gonder. In general, community colleges have relatively low rates of completion of these key SITEM courses, and disparities in completion of these courses by race/ethnicity and gender are common. The STEM momentum metrics identified is the study may therefore be useful for colleges seeking to strengthen STEM transfer outcomes and close-equity gaps in STEM bachelor's degree attainment.

Completion of program-foundational courses specified on structured transfer pathway

Early Program Momentum

Entrance into a structured transfer program (e.g., Ohio Guaranteed Transfer Pathway)

Capturing Early Community College "STEM-Mentum"

STE Course Type (Excluding Math)

(e.g., Chem I/II; Bio I/II)

STE Foundation

(Pre-Reqs to STEM Transfer, e.g., intro chem/bio courses)

Other STE, Likely Transferable

Other STE, Likely Terminal

Any STEM

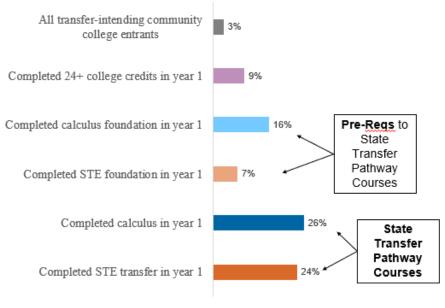
Math Course Type

Calculus

Foundations to Calculus

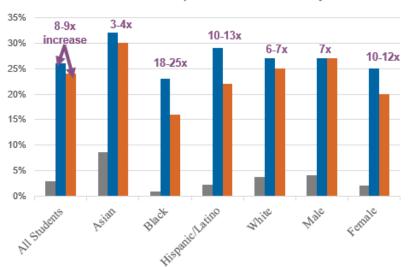
(Pre-Calculus, Trigonometry/ Geometry, College Algebra)

Statistics


Other Math Subjects (College Level)

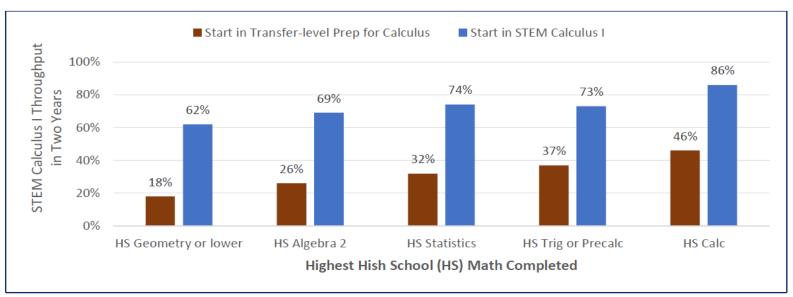
Developmental Math

Transfer Pathway Courses Can Capture Program Momentum


STEM Bachelor's Completion Rates in 6 years (State A)

Benefits of Early STEM Momentum Reliable across Student Groups

STEM Bachelor's Completion Rates in 6 years (State A)


- (Baseline) All transfer-intending CC entrants
- Students who completed calculus in year 1
- Students who completed STE transfer in year 1

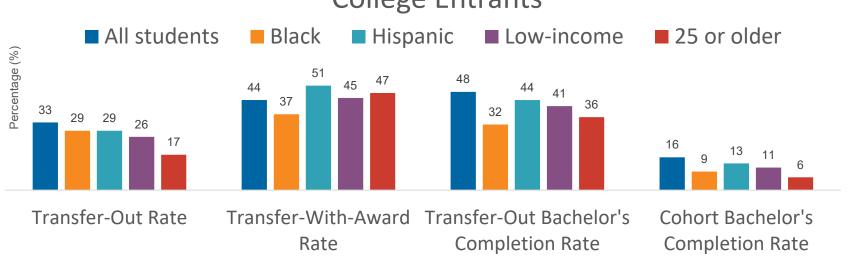
Stop using Sputnik-era math sequence to divert talented students from STEM education and careers.

Figure 2. STEM Calculus 1 Two-Year Throughput, STEM Students Disaggregated by Starting Level and Highest High School Math Completed

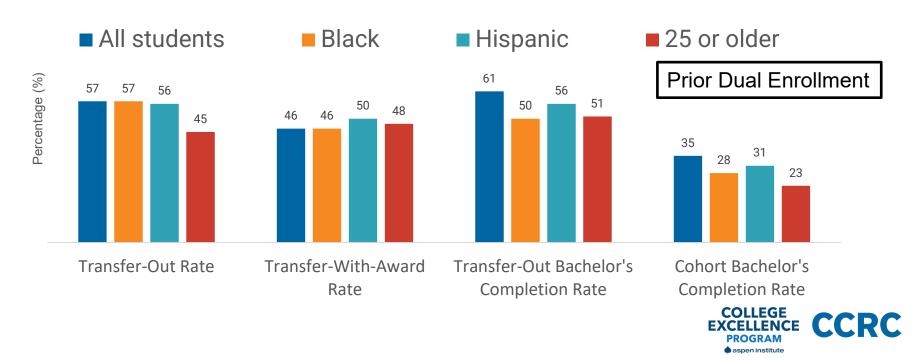
Source: California Community Colleges and RP Group, Preparatory Pathways and STEM Transfer Completion, Feb 2024.

For more information, contact us at:

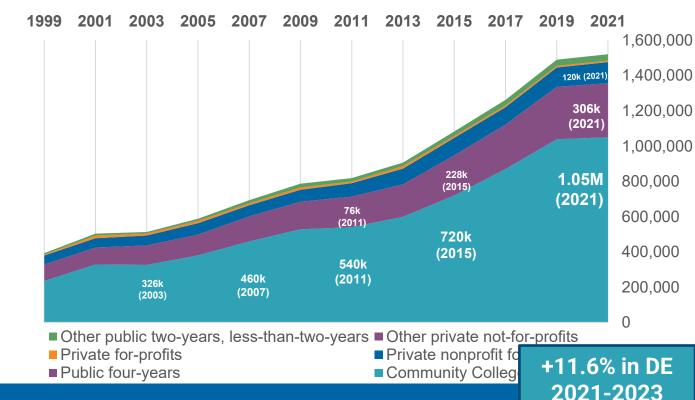
Davis Jenkins, pdj2102@.tc.columbia.edu



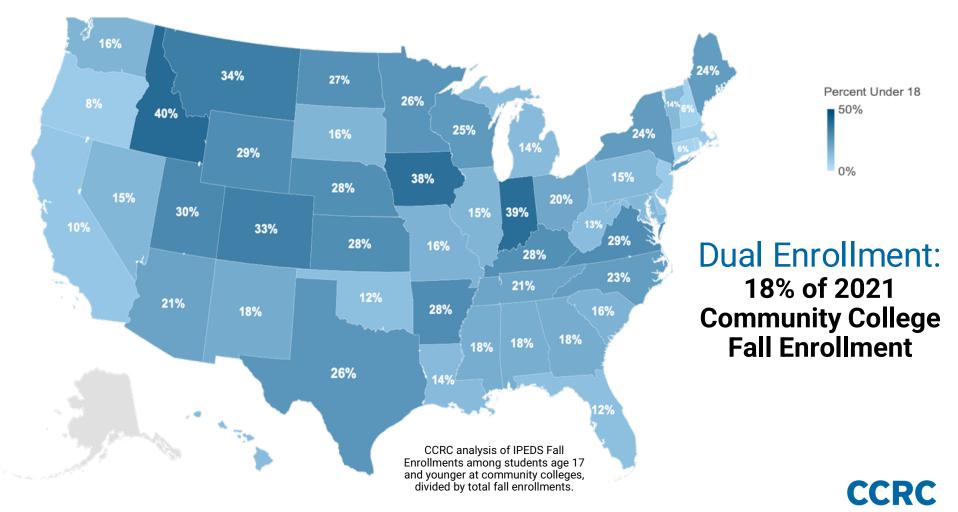
Recall... transfer outcomes are even lower among low-income, Black, Hispanic and older students


Six-Year Transfer Outcomes, Fall 2015 Community
College Entrants

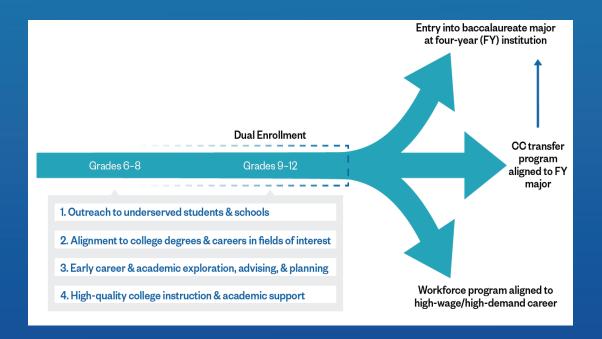
Many students enter CCs with prior dual enrollment, and their transfer outcomes are much better


Six-Year Transfer Outcomes
Fall 2015 Community College Entrants with Prior Dual Enrollment

Dual Enrollment by Sector 1999-2021


IPEDS Fall Enrollments

Fall Undergraduate Enrollments among Students Aged 17 or Younger


(NSC)

Enrollment by high school dual enrollment students boomed nationally for more than two decades.

Dual Enrollment Equity Pathways (DEEP)

Framework for building equitable onramps to debtfree, career-path degree
programs after high school
(while increasing yield of recent high school grads)

DEEP Practices

Outreach to underserved students and schools

- Focus outreach on underserved high schools, students, and communities
- Start outreach before high schoo
- Leverage community connections to build awareness
- · Build trust with and educate parents and families.

Align DE course offerings to college degrees and careers

- · Inventory current DE offerings.
- Map DE offerings to college degree programs in fields of interest.
- Embed DE offerings in career-connected high school programs.

Advise students to explore interests and develop plans

- Use DE to showcase college programs and support exploration.
- Help students develop a college program plan and provide checkpoint advising.
- · Coordinate advising roles across sectors.

Support students by delivering high-quality instruction

- · Scaffold coursework and frontload supports.
- · Respond quickly when students are struggling.
- · Provide additional, structured support for online classes.
- · Support DE instructors and monitor quality.

Approaching Dual Enrollment with a DEEP Mindset

CONVENTIONAL MINDSET

DE courses **made available** to students who are already college bound

Focus mainly on strengthening students' academic preparedness for college

Offerings mainly emphasize **general education courses**

Focus on achievement of **academic content** standards

High school CTE focused mainly on **immediate post-high-school employment**

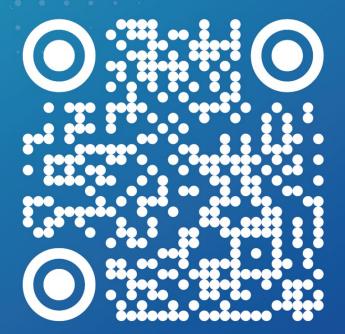
DEEP MINDSET

Active outreach and support for underrepresented students and families starting in middle school

Focus also on building **motivation for college** by helping students explore interests and begin to develop an education/career plan

Offerings also introduce students to high-opportunity postsecondary pathways through **program foundation courses**

Added focus on helping students become confident college learners through active teaching/learning


Students motivated and supported to apply high school CTE credits toward college degree programs in high-opportunity fields

DEEP@CCRC

Resources on dual enrollment equity pathways for K-12 and college practitioners.

OCTOBER 2023

Rethinking Dual Enrollment as an Equitable On-Ramp to a Career-Path College Degree Program After High School

By John Fink and Davis Jenkins

In this report, we present a model for rechiaking dual enrollment—through which wert I. Smillion high school vulneria take courses for college redit each yeat—as a more equitable on-ramp to college degree programs that prepare students to secure well-paying, career path employment in their 200. We describe emergent efforts by early adopter institutions of whole-college guided pathways reforms to expand access to dual enrollment for students from groups underrepresented in college and to redesign dual enrollment offerings and supports so that students can more readily pursues postsocondary degree program in a field they are interested in directly after high school. This model, which we call dual enrollment equity pathways (DEET), reflects a stange in mindee from colleges in all high schools conventional approach to dual enrollment. Convention and a derollment of the conventional approach to dual enrollment of the convention of the convention

We present a conceptual model for DEEP and cite research to support its four main areas of practice; (1) ourreach to underserved students and schools; (2) alignment to college degrees and careers in fields of interest; (3) early career and scademic exploration, davising, and planning; and (4) high-quality college instruction and academic support. It is worth noting that DEEP practices reflect the curricular coherence and holistic supports either in early college; high schools, which research has shown to be effective in increasing college; going and completion scheme and the school of the school o

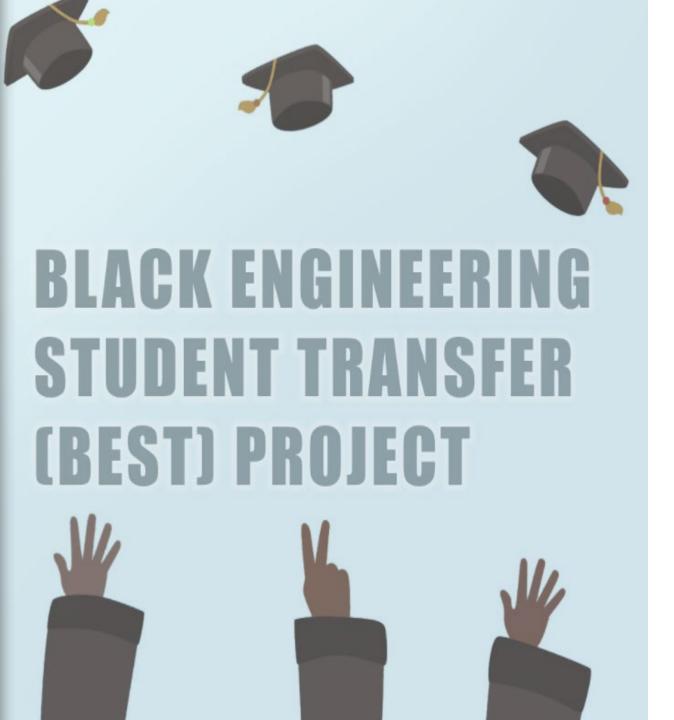
The DEEP model expands access to dual enrollment for underserved students and redesigns offerings and supports so that students can pursue a postsecondard degree program directly after high school.

Insights **Redesigning Dual Enrollment as** a Purposeful Pathway to College and Career Opportunity John Fink · Sarah Griffin · Aurely Garcia Tulloch · Davis Jenkins · Maggie P. Fay Cat Ramirez » Lauren Schudde » Jessica Steiger

Revisiting our Broadening Participation in Engineering Agenda by Expanding our Target Demographic

Monday, May 20th, 2024

Dr. Bruk Berhane, Assistant Professor of Engineering Education SUCCEED + STEM Transformation Institute


Typical framing for BPE/BPC in literature

Findings from a systematic literature review on assessment-related articles on BPE/Broadening Participation in Computing with a focus on Black students

Population	Number of Articles
K-12 Focus	9
Undergraduate Focus	20
Graduate Focus	1
Participants at Multiple Levels	3
Community College/Workforce Focus	<mark>O</mark>

Holloman, T. K., Lee, W. C., London, J. S., Hawkins Ash, C. D., & Watford, B. A. (2021). The assessment cycle: Insights from a systematic literature review on broadening participation in engineering and computer science. *Journal of Engineering Education*, 110(4), 1027-1048.

Three-Year Broadening
Participation in Engineering Study

PI: Dr. Bruk Berhane

This material is based upon work supported by the National Science Foundation under Award No. 1828619

Research Questions

- What do ethnically and culturally diverse Black students at three points in the transfer process from community college into four-year engineering departments identify as key factors that shape their transfer and persistence/retention experiences?
- To what extent do within-group differences influence the factors shared by and the experiences of these students?

Research Methods

- Demographic surveys
- Interviews/focus groups at three points
 - 1) Community college prior to transfer
 - 2) Initial transfer to the four-year university
 - 3) Nearing four-year degree
- Longitudinal approach adapted during
 COVID-19 to review snapshots in time

Support of the Community College

- Extremely supportive faculty
- Knowledgeable advisors
- Different faculty/staff "norms" than in the four-year context

"I was like, 'I have a question about where I should transfer.' [The advisor] was like, 'Anywhere. Where do you want to go?' And then, that sort of things [sic] coming from people like [name of advisor] who went to the good schools...it motivates you to work hard." - Aman

Exploring the Transfer Process

- Some participants navigated the transfer process without much institutional assistance; they encountered confusing websites and incorrect information
- Other participants benefitted from supported faculty, staff, and minorityfocused (non-STEM/engineering) programs

"A bunch of my friends went to the [four-year university that initially denied them transfer admission]...and I'm just like, '...How do you make mistakes like that?'..."

– Douglas

Acclimating to the New Environment (course differences)

- The size and scope of the four-year campus required unexpected learning
- Information gaps that students encountered in what faculty seemed to expect them to already know
- Students found the four-year school to be more "intense" than the two-year school.

"I felt very overwhelmed when I transferred here. Everything is bigger and different. Some of the challenges that I had – [in] my first week, I didn't even know how to access [the learning management system], so, [laughs] yeah, so that was something I had to figure out." - Lelia

Acclimating to the U.S. and to the four-year institution (cultural differences)

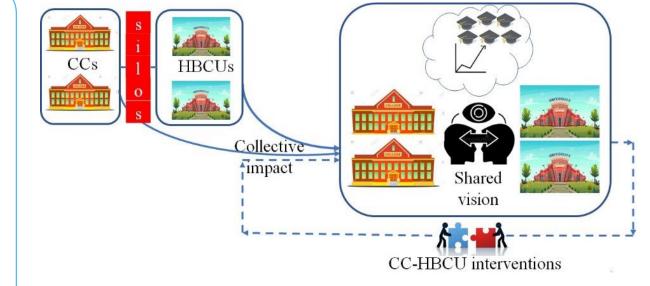
- Students' accents and their command of American English made them feel othered, before and after transfer
- After transfer, students encountered racism

"I identifi[ed] myself as an engineering student [before I transferred], and when I transferred...I saw myself as a Black engineering student." - Uchie

CAREER: Better Together: Leveraging the Shared Commitment of Community Colleges and HBCUs to Optimize Black Engineering Student Pathways

Community Colleges (CCs)

Historically Black Colleges and Universities (HBCUs)


Five-Year Broadening Participation in Engineering Study PI: Dr. Bruk Berhane

Selected Research Questions

What are the current challenges, opportunities, and trends in the existing CC-HBCU engineering pathway space?

How can CCs and HBCUs work together to develop a shared vision for optimizing Black engineering student pathways, using collective impact as a guiding strategy?

Switching Schools: Effects of College Transfers

Lois Miller

University of South Carolina, Department of Economics

May 20, 2024

Disclosure: The conclusions of this research do not necessarily reflect the opinions or official position of the Texas Education Agency, the Texas Higher Education Coordinating Board, the Texas Workforce Commission or the State of Texas.

▶ 35% of students transfer postsecondary institutions at least once within 6 years

- ▶ 35% of students transfer postsecondary institutions at least once within 6 years
- Little quantitative research on how transferring causally affects student outcomes

- ▶ 35% of students transfer postsecondary institutions at least once within 6 years
- ▶ Little quantitative research on how transferring causally affects student outcomes
- ▶ Prior work shows positive effects of attending better-resourced colleges (Lovenheim and Smith, 2023)
 - Rarely considers transfer students
 - Often find larger effects for low-income students

- ▶ 35% of students transfer postsecondary institutions at least once within 6 years
- ▶ Little quantitative research on how transferring causally affects student outcomes
- Prior work shows positive effects of attending better-resourced colleges (Lovenheim and Smith, 2023)
 - Rarely considers transfer students
 - ► Often find larger effects for low-income students
- ► This paper studies the returns to transfer, with a focus on students transferring to better-resourced institutions

Research Question

What are the effects on BA completion and earnings of transferring

- ▶ from a 2-year college to a 4-year college?
- from a nonflagship 4-year college to a flagship college?

Direction of effects not clear

- ▶ Loss of credits; transfer "shock" could negatively affect outcomes
- Increase in college resources and match could have positive effects

Data

Administrative data from Texas Education Research Center, 1994-2021

- Detailed background characteristics; HS enrollment and test scores
- ► Semester-by-semester enrollment and graduation from all TX colleges
- Applications and admissions to TX public 4-years
- Quarterly earnings from unemployment insurance records

▶ In general, students who transfer are different than students who don't transfer

- In general, students who transfer are different than students who don't transfer
- Regression discontinuity uses GPA cutoff used for transfer admission (e.g., minimum required GPA)
 - 2 students apply to transfer: 1 has GPA just above cutoff; other just below
 - These students are similar, except one above the cutoff more likely to transfer

- In general, students who transfer are different than students who don't transfer
- Regression discontinuity uses GPA cutoff used for transfer admission (e.g., minimum required GPA)
 - ▶ 2 students apply to transfer: 1 has GPA just above cutoff; other just below
 - ▶ These students are similar, except one above the cutoff more likely to transfer
- ► I estimate transfer admission cutoffs from applications and admissions data from all TX 4-year public colleges Details
 - Cutoffs are "fuzzy": some students below accepted and some above rejected

- In general, students who transfer are different than students who don't transfer
- Regression discontinuity uses GPA cutoff used for transfer admission (e.g., minimum required GPA)
 - 2 students apply to transfer: 1 has GPA just above cutoff; other just below
 - ▶ These students are similar, except one above the cutoff more likely to transfer
- ► I estimate transfer admission cutoffs from applications and admissions data from all TX 4-year public colleges Details
 - Cutoffs are "fuzzy": some students below accepted and some above rejected
- Results give average effects for students near the cutoff, not all transfer students
 - Most cutoffs are low (avg = 1.9 GPA)
 - ► Comparison is to students who *applied* to transfer and were barely rejected

Results: First Stage Effect of Being Above Cutoff on Transfer

Table: First Stage, 2-Year Applicants

	Accept	Transfer
$\mathbb{1}(GPA_i \geq T_{ct})$	0.15***	0.12***
	(0.0069)	(8800.0)
Obs	54,194	54,194
F Stat	485.9	170.1

Students with GPAs just above the cutoff are **15 pp** more likely to be accepted and **12 pp** more likely to transfer than those just below the cutoff 4-Year Applicants

Students above and below discontinuity appear similar Balance Table Density

Results: Effects of Transfer on Earnings

	2-year to 4-year	4-year to Flagship
TransferTarget	-9,176**	-11,695*
	(3,741)	(6,870)
$E[Y_0 C]$	46,123	51,946
Observations	417,026	88,765

- ► Earnings losses are persistent and increasing over time By Time Since Transfer
- ► Similar results using different measures of earnings Other Earnings Measures

- Substitution into lower-paying majors is a mechanism for earnings decreases for 4-year to 4-year flagship transfers
 - ► Mostly out of business and into social sciences Majors

- ► Substitution into lower-paying majors is a mechanism for earnings decreases for 4-year to 4-year flagship transfers
 - Mostly out of business and into social sciences Majors
- ▶ Changes in major are not a mechanism for 2-year to 4-year earnings decreases

- Substitution into lower-paying majors is a mechanism for earnings decreases for 4-year to 4-year flagship transfers
 - ► Mostly out of business and into social sciences Majors
- Changes in major are not a mechanism for 2-year to 4-year earnings decreases
- Very few transfer applicants from 2-year colleges in my sample pursue STEM degrees (whether they transfer or not)

- ➤ Substitution into lower-paying majors is a mechanism for earnings decreases for 4-year to 4-year flagship transfers
 - ► Mostly out of business and into social sciences Majors
- Changes in major are not a mechanism for 2-year to 4-year earnings decreases
- Very few transfer applicants from 2-year colleges in my sample pursue STEM degrees (whether they transfer or not)
- ➤ Transfer is decentralized in Texas: each university sets its own requirements that may vary by major/department (Schudde et al., 2021a, 2021b; Bailey et al., 2017)
- Transfer students' major choice may be limited by how credits transfer

Other Mechanisms for Earnings Decreases

- Decreases in employment and loss of experience Emp Exp
- ► Loss of networks Dist from Home
- ▶ Difficulty adjusting to new environment; lack of support for transfers students (Flaga, 2006; Packard et al., 2011; Handel and Williams, 2012; Ellis, 2013; Elliott and Lakin, 2021)

Decreases in earnings are not explained by

- Selective out-migration from Texas Out-Migration
- Substitution into lower-paying industries Pred Earn by Ind
- Decreases in final GPA or relative rank based on GPA GPA

Policy Implications

In principle, transfer could be cost-effective way to obtain BA degree

- ▶ Especially with rise of free community college "promise" programs
- ► Findings from this paper caution that transfer can have negative effects on marginal students' earnings
- ► Care must be taken in structuring transfer system + designing policy

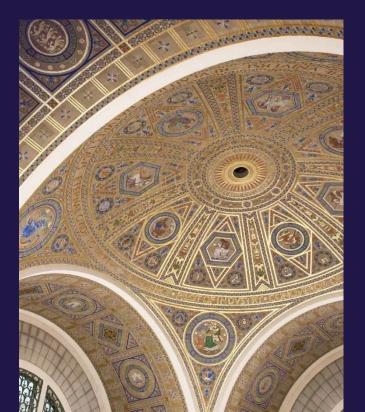
Policy Implications

In principle, transfer could be cost-effective way to obtain BA degree

- Especially with rise of free community college "promise" programs
- ► Findings from this paper caution that transfer can have negative effects on marginal students' earnings
- Care must be taken in structuring transfer system + designing policy

Possible policy responses

- Raise GPA cutoffs for admission
- Provide better info to prospective transfer students
- Increase transfer student supports
 - ▶ 4-years often devote more resources to first-time-in-college students than transfers
 - ► Comprehensive support systems have had positive effects at 2-year colleges


Thank you!

Email: Lmmiller22@wisc.edu

Website: Loismiller.info

Twitter: @Lois_Miller, Bluesky: @loismiller.bsky.social

Changes to FAFSA and their Implications for Pathways to Undergraduate STEM Degrees

Changes to FAFSA and their Implications for Pathways to Undergraduate STEM Degrees

Moderator:

Susan Rundell Singer
St. Olaf College
(Roundtable Member)

Panelists:

Liz Clark
National Association of
College and University
Business Officers

Justin Monk
National Association of
Independent Colleges
and Universities

Joseph Montgomery North Carolina A&T State University