

#### Science and Engineering in Preschool through Elementary Grades

The Brilliance of Children and the Strengths of Educators

Available at: <a href="www.nap.edu">www.nap.edu</a> {search Brilliance and Strengths}



#### Norms for Participation

Strive to promote an inclusive environment where everyone feels welcomed, valued, respected, and supported

- Embrace diversity
- Be open, listen respectfully
- Be constructive in your comments
- Remember, bullying behavior will not be tolerated
  - If you see any unwelcomed behavior and you feel comfortable to, call it out
  - Let a National Academies staff member know

#### **Virtual Participants:**

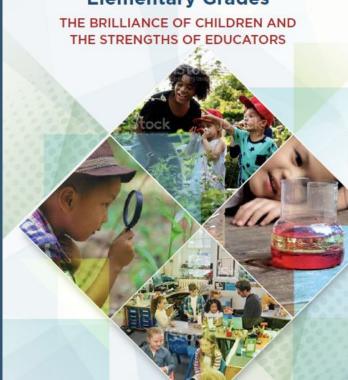
Chat is enabled and you are encouraged to actively engage with participants. Questions for the panelists/moderators need to be entered into the Q&A box.

#### **In-person Participants:**

Please come to one of the mics.

Share on Twitter #BrillanceAndStrengths

#### Agenda


| 1                        | 5                                |
|--------------------------|----------------------------------|
| Brief Report Overview    | Lunch/Break – About 1 hr         |
| 2                        | 6                                |
| Learning in Practice     | Policy, Practice, and Leadership |
|                          |                                  |
| 3                        | 7                                |
| 3<br>Break – 15 min      | 7<br>Sponsor Reflections         |
| 3<br>Break – 15 min<br>4 | 7<br>Sponsor Reflections<br>8    |

#### Brief Report Overview

The National Academies of SCIENCES · ENGINEERING · MEDICINE

CONSENSUS STUDY REPORT

Science and Engineering in Preschool Through Elementary Grades



#### **BOARD ON SCIENCE EDUCATION**

# Science and Engineering in Preschool through Elementary Grades: The Brilliance of Children and the Strengths of Educators

#BrillianceAndStrengths

#### Sponsors:

Carnegie Corporation of New York Robin Hood Learning + Technology Fund

#### Charge

Provide guidance on effective approaches to science & engineering instruction in PreK-5 that support success of all students.

- learning experiences prior to entering school
- promising instructional approaches
- integration of science & engineering with other subjects
- role of curriculum & instructional materials
- professional learning opportunities
- policies & practices at the national, state, & local levels
- gaps in the current research base



#### Committee and Study Staff

**COMMITTEE** 

**ELIZABETH A. DAVIS** (Chair)

University of Michigan

**HEIDI CARLONE** 

Vanderbilt University

**JEANANE CHARARA** 

SOLID Start, Michigan State University

**DOUGLAS CLEMENTS** 

University of Denver

KATIE MCMILLAN CULP

New York Hall of Science

XIMENA DOMÍNGUEZ

Digital Promise

Academies of

DARYL GREENFIELD

University of Miami

MEGAN HOPKINS

University of California, San Diego

**ENGINEERING** 

The National | SCIENCES

**EVE MANZ** 

**Boston University** 

TIFFANY NEILL

Oklahoma State Board of Education

K. RENAE PULLEN

Caddo Parish Public Schools, Shreveport, LA

WILLIAM SANDOVAL

University of California, Los Angeles

**ENRIQUE SUÁREZ** 

University of Massachusetts

**CARRIE TZOU** 

University of Washington, Bothell

PETER WINZER (NAE)

**Nubis Communications** 

CARLA ZEMBAL-SAUL

Pennsylvania State University

STUDY STAFF

**AMY STEPHENS** 

Study Director

MARGARET KELLY

Senior Project Assistant

TIFFANY TAYLOR

**Program Officer** 

**HEIDI SCHWEINGRUBER** 

Director, Board on Science Education



# Why science and engineering for every child?

#### Oriented to the future

- Solid foundation (enthusiasm & knowledge) for later success
- Become informed decision-makers
- Access to high-paying STEM-related jobs
- Involvement of broader range of identities and backgrounds

#### Oriented to the present

- Deserve to experience wonder of science and satisfaction of engineering
- Children deeply curious about the world
- Opportunities to ask and answer authentic questions and solve real-world problems that are important to them



#### The Committee's Commitments

- Acknowledge that science and engineering are not neutral
  - Situated within complex historicized system
  - Antiracism and justice central elements of educational system that works to redress social inequities and oppressions.
- Recognize strengths of children, communities, families and educators
  - Use asset-based language in describing these actors & settings.
  - Attend to how learning environments could draw on, build, and attend to these strengths and needs.
- Hold vision for science and engineering learning as intentionally bringing together science and engineering practices, disciplinary core ideas, crosscutting concepts, identities, and interests.



#### Four Approaches for Equity and Justice

1

2

3

4

Increasing
opportunity and
access to high
quality science
and
engineering
learning and
instruction

Emphasizing increased achievement, representation and identification with science and engineering

Expanding what constitutes science and engineering

Seeing science and engineering as part of justice movements

Academies of MEDICINE

# Equity and Justice: A High-Level Synthesis Across Report

1

2

3

4

Increasing
opportunity and
access to high
quality science
and
engineering
learning and
instruction

Emphasizing increased achievement, representation and identification with science and engineering

Expanding what constitutes science and engineering

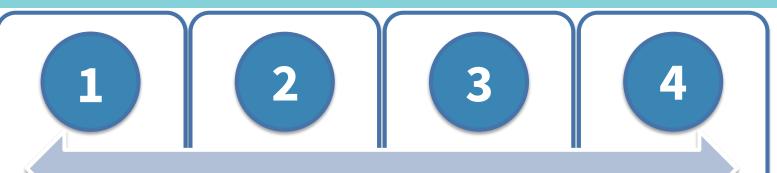
Seeing science and engineering as part of justice movements

Academies of MEDICINE

# Equity and Justice: 1 - Opportunity and Access

1

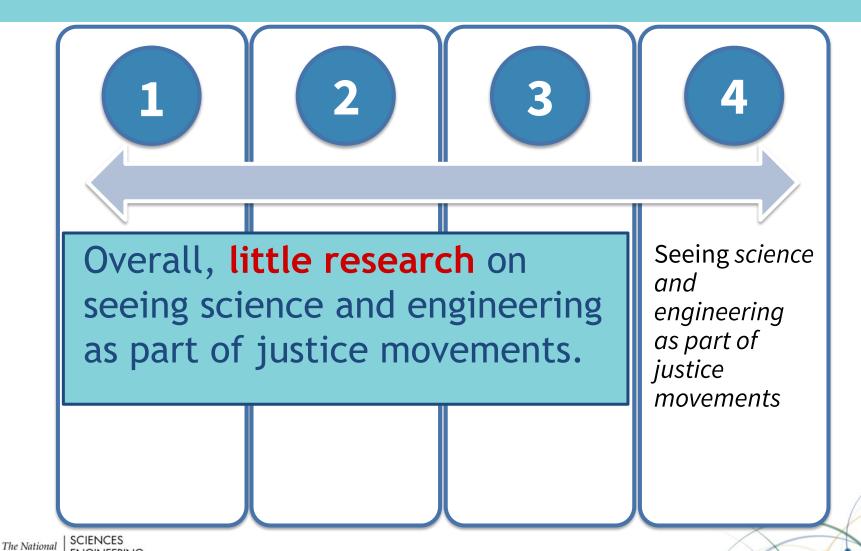
Increasing opportunity and access to high quality science and engineering learning and instruction


- Biggest issue is **instructional time**. Lack of resources, particularly in schools that serve larger proportions of children of color, also negatively affects opportunity and access.
- Drawing on children's cultural and linguistic resources can give a broader range of children opportunity and access.
- Leaders set up the conditions that allow science and engineering to be taught well in schools.

# Equity and Justice: 2 - Achievement, Representation, and Identification



- Educational policies aimed to increase achievement in reading & mathematics have had unintended effect of decreasing children's opportunities to learn science.
- Helping children orient to meaningful phenomena & design challenges & developing classroom culture oriented toward collective well-being & knowledge building, may help them engage more fully in sensemaking & develop their identities as people who do science and engineering.
- Texts & curriculum materials can increase representation, allowing broader range of children to "see themselves" in science/engineering. Diversifying teacher educator workforce can help preservice elementary teachers see themselves as people who can teach science.


# Equity and Justice: 3 - What Constitutes Science and Engineering



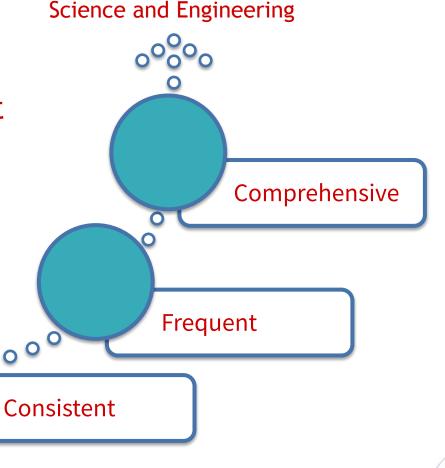
- Systems can **reify status quo**. Principals can support shifts in perspectives on what constitutes science/engineering.
- Expanding how science/engineering discourses are defined & connecting to families and places can help develop more expansive perspective.
- By failing to recognize science/engineering in what children say or do, educators may fail to leverage rich opportunities to learn.
- Expanded vision of science/engineering practices helps to demonstrate the strengths Indigenous children or other children of color bring to science and at the same time, extends all children's perspectives about what constitutes science.

MEDICINE

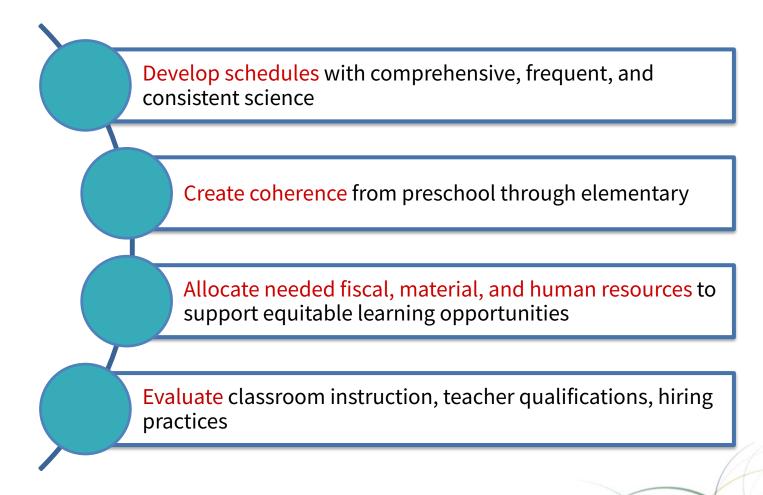
# Equity and Justice: 4 - Part of Justice Movements



Academies of


### Prioritizing Science and Engineering in Preschool through Elementary Grades




#### State Policymakers should

Ensure children not pulled out of science and engineering instruction for remediation in other subjects.

Establish policies for schedules



#### District and School Leaders should



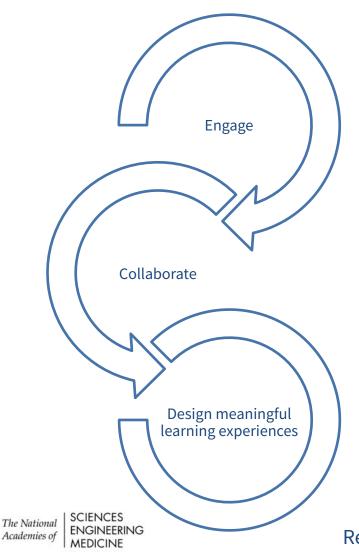
### Supporting Children's Learning and Proficiency



#### What Can Teachers Do

Arrange instruction around phenomena and design problems

Enact learning experiences that establish norms for a caring, collective culture


Position children as active thinkers and doers

Include formative assessment processes that gather multiple forms of evidence at multiple timepoints

Seek opportunities to continue to build expertise in working toward equity and justice



### Preschool and Elementary School Leaders and Teachers should



Engage and collaborate with families and local community leaders to mutually support children's opportunities for engaging in science and engineering.

Collaboration allows for leaders and teachers to design meaningful and relevant learning experiences and helps families to better support their children's learning outside of school.



Recommendation 9

### Curriculum Materials and Content Integration



#### Principles Guiding Effective Integration

Engage children in investigation and design experiences that draw on multiple domains

Make integration explicit in design and teaching

Support children's knowledge in individual disciplines

Recognize that more integration is not necessarily better



#### Opportunities for Effective Integration

ELA

- Incorporate text to help children develop and deepen explanations.
- Incorporate text describing doing and using science/engineering and help children develop identities and interests.
- Support children in producing texts to represent reasoning.

**Mathematics** 

- Help children engage in quantification.
- Support children in transforming and analyzing data, and understanding data representation and statistics.

Computational Thinking

- Use science/engineering contexts to highlight computational thinking practices
- Use computational thinking as method for exploring science/engineering concepts





#### Curriculum Developers should

Build partnerships with researchers, teachers, school or district leaders, and families and community leaders

**Recommendation 10** 

Provide opportunities for children's sensemaking around investigation/design;

Build on children's interests & repertoires of practice;

Provide educative supports for teachers;

Provide opportunities for teachers to make productive adaptations;

Provide supports for teachers to make meaningful connections to communities and families;

Explore integrating with other domains;

Manageable for use in preschool & elementary settings;

Align preschool and elementary instruction; and

Show evidence of effectiveness.

#### State and District Leaders should

- Rely on a robust evidence-based review, selection, and implementation process when making decisions about curricular programs to adopt
- Ensure science & engineering units build toward the vision of the *Framework* and are grounded in investigation and design, coherent, flexible, adaptable, and equitable.

#### State and District Leaders should

**Sustained Professional Learning Opportunities** 

Adequate Access to Materials, Equipment, and Physical/Digital Resources

Ensure Every School Has Materials and Resources That Work Toward Equity and Justice



#### **Supporting Educators**



### Teacher Educators, PD Facilitators, School/District Leaders should

Help teachers to recognize importance and value of teaching science and engineering

Understand and address needs and goals of classroom teachers

Support teachers in connecting their professional learning with classroom practice

Foreground authentic and equitable science and engineering content and disciplinary practice

Support teachers in recognizing and valuing their learners' conceptual, linguistic, and cultural resources

Allow for meaningful integration of science and/or engineering with other subjects

Support teachers' effective use and adaptation of science and engineering curriculum materials





#### District and School Leadership



#### District Leaders should

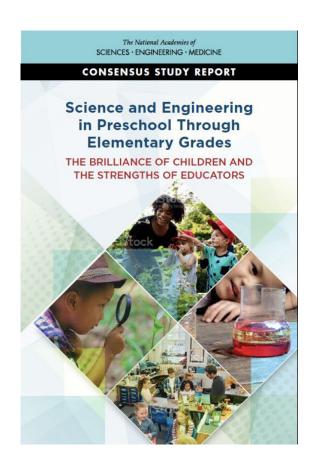
Provide professional learning opportunities for school leaders to enhance the leaders' capacity for providing instructional leadership.

#### These experiences should

- focus on science and engineering practices and
- support leaders in seeing multiple ways that science/engineering are valuable for children.



#### **Closing Remarks**




### Areas for Further Research (a sampling!)

- Science and engineering pedagogies, curriculum, and teacher education and professional learning for preschool through elementary school that emphasize equity and justice
- Children with learning disabilities and/or learning differences and how they learn science and engineering
- Integration of subject areas, particularly outside ELA and math
- Incorporation of engineering in preschool through elementary settings
- Synergies among the relational work and the disciplinary work in science and engineering
- Teachers' and preservice teachers' enacted practice particularly with regard to using pedagogies that work toward equity and justice



#### Questions and Discussion



You can obtain a PDF (for free!) or order the book at nap.edu — search for Brilliance and Strengths

Practitioner companion volume coming soon!

Check out the new "Interactive Overview" linked from the NAP page!









#### Learning in Practice



02

#### Learning in Practice: Introductions

Jenn Brown-Whale (moderator)

Howard County Public School System Resource Teacher, Elementary Science

Twitter: @ElemSci\_JennBW



- 42 Elementary Schools
  - 31 sites offer a PreK program
- Approximately
  - 1,300 PreK students
  - 24,000 K-5 students



- Elementary Science Office
  - Amy Reese, Coordinator
  - Jenn Brown-Whale, Resource Teacher











- Elementary Science Teacher Leader (ESTL) Cohort
  - Teacher professional learning and leadership initiative facilitated by HCPSS Elementary Science Office
  - Build relationships so that we may increase educator capacity in service of high quality science and engineering education for all students

- Elementary Science Teacher Leader (ESTL) Cohort
  - Started 2016-2017 school year,
     15 invited members,
     representing 11 schools
  - 2022-2023 school year we welcome 35 returning and new members representing 31 different schools









Jenn Brown-Whale

(moderator)

Howard County Public School System

Resource Teacher, Elementary Science

**Jennifer Atkins** 

Kindergarten Teacher,

Waverly Elementary School

**Connie Haymon** 

Math Specialist,

Laurel Woods Elementary School

**Linda Wilson** 

Grade 5 Teacher,

Manor Woods Elementary School

"Learning science depends not only on the accumulation of facts and concepts but also on the development of an identity as a competent learner of science with motivation and interest to learn more."

■A Framework for K-12 Science
Education, page 287

# What's your "why;" what brings you here as an advocate?













One recommendation that the report presents to educators is to position students as active thinkers and doers. How does this show up in your classrooms, or the























What aspects of curricular materials help educators to put the committee's vision into practice?







How can leaders - curriculum developers, content specialists, district leaders, school administrators, policy makers - and teachers work together in service of high quality science and engineering learning for all students?







We are currently on break.

We will return at 8 PT / 11 ET



03

Designing Curricular Materials for Elementary Science and Engineering



04

#### **Panelists**

**Terrance Burgess** Michigan State University

**Christine Cunningham** Pennsylvania State University

María González-Howard University of Texas at Austin

**Amelia Wenk Gotwals** Michigan State University

**Ted Willard** Discovery Education

We are currently on break.

We will return at 10:30 PT / 1:30 ET



U<sub>5</sub>

# Policy, Practice, and Leadership



06

#### **Panelists**

**Kate McNeill** 

(virtual)

**Boston College** 

Sara Mead

Assistant Superintendent for Early Learning, DC Office of the State Superintendent of Education

Jennifer Williams

NSTA Division Director for Preschool and Elementary Science Teaching, Isidore Newman School

# Sponsor Reflections

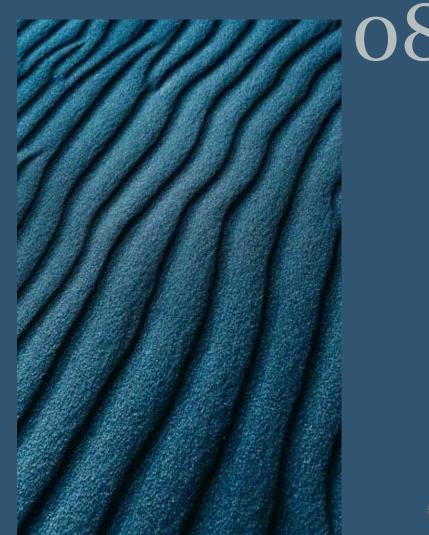


### **Sponsors**

**Amber Oliver** 

(virtual)

Robin Hood Learning + Technology Fund


**Jim Short** 

(virtual)

Carnegie Corporation of New York

# Adjourn

The practitioner volume is still in the works. Stay tuned for an update for when it is available.

