

Data Science National Landscape

Implementation Throughout The States

0 00

10

00

1 11 01

01 10

0 10

111

Our Team

Harme

Ellen

Zarek Drozda

Executive Director

Zarek helped launch DS4E in 2019, co-organizing a coalition of now 1000+ education leaders to advance data science and data literacy education in K-12 schools. Zarek has worked at the intersection of applied research, data, and policy. He served as a Data Science Fellow for the U.S. Department of Education's Institute of Education Sciences (IES), where he led research on data science, artificial intelligence, blockchain, and other emerging technology education. While working at the Federal level, Zarek also advised the national COVID response, coordinating data analytics for an inter-agency team between the White House, Department of Education, and Center for Disease Control (CDC). Prior to Federal service, Zarek helped build a social impact incubator (the Center for RISC) with economist and Freakonomics co-author Steven Levitt. Zarek earned a Bachelor's degree in Economics from the University of Chicago, and loves using data to tackle complex social problems.

Harding Mahmoud

eav Samantha

Sean

Sukol

Miller Sarah

Kochkorova

Jazgul

Stripling Shea

Morgan Marisa

About Data Science 4 Everyone

A joint team of classroom teachers, researchers, industry, and policy folks.

Data Science 4 Everyone is a national initiative, coalition, and community based at The University of Chicago, working to catalyze the adoption of data science and data literacy as a fundamental component of K-12 education. Incubated at the UChicago Center for RISC and popularized by the 2019 Freakonomics podcast "America's Math Curriculum Doesn't Add Up," DS4E is striving to incorporate data science across school subjects and grade-levels.

International Landscape

International Efforts are Scaling Quickly

CanCode, an initiative of the 2017 Innovation and Skills Plan, funds K-12 learning and teacher professional development programs with a focus on digital skills development, including coding and data analytics.³ CanCode was extended for the second time in 2021, and by 2022, CanCodefunded programs reached over 4.5 million students and 220,000 teachers. The third iteration will distribute an additional 80 million Canadian dollars to at least 29 projects across Canadian provinces and online.⁴

Among the first recipients of CanCode funding was Kids Code Jeunesse, "a bilingual Canadian charity determined to give every Canadian child access to digital skills education, with a focus on girls and underserved communities."5 Kids Code Jeunesse has trained over 22,000 educators and reached more than 700,000 children through initiatives such as the Algorithm and Data Literacy Project, a partnership between the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Canadian Commission for UNESCO, and Kids Code Jeunesse's parent organization, Digital Moment.⁶ The Algorithm and Data Literacy Project's goal is to "empower kids to exercise critical thinking in how they engage online, and to become proactive, creative users and makers rather than passive consumers." Digital Moment has published a series of materials through the project to help students and educators improve their data literacy skills and understand Al. The Al Primer, Data

- evaluate their methods and experimental conditions, including identifying sources of error or uncertainty, confounding variables, and possible alternative explanations and conclusions:
- describe specific ways to improve their investigation methods and the quality of the data
- evaluate the validity and limitations of a model or analogy in relation to the phenomenon modeled;
- demonstrate an awareness of assumptions, question information given, and identify bias in their own work and secondary sources;
- consider the changes in knowledge over time as tools and technologies have developed;
- connect scientific explorations to careers in science;
- exercise a healthy, informed skepticism, and use scientific knowledge and findings to form their own investigations and to evaluate claims in secondary sources;
- consider social, ethical, and environmental implications of the findings from their own and others' investigations; and
- critically analyze the validity of information in secondary sources and evaluate the approaches used to solve problems.

¹ Government of Canada, "Understand the Canadian education system,' Canadian Education System.

Statistics Canada, "Data Science," Statistics Canada, accessed Februa
 Innovation, Science and Economic Development Canada, "Canada's N

February 24, 2024, Innovation, Science and Economic Development Can
Innovation, Science and Economic Development Canada, "Funded Ca

Additionally, an entire semester's worth of topics related to data science was added to high school textbooks and the *Gaokao*, including an introduction to big data, distributions of discrete random variables, normal distributions, linear regression with two variables, and predictive models. In general, the new curriculum emphasized applied math and the use of real-world data. For example, students learned about estimating populations using samples through case studies that asked them to estimate the number of tanks in Germany between WWI and WWII and the prevalence of obesity in American office workers. The Beijing *Gaokao* in 2021 and again in 2022 included questions related to statistical analysis, hypothesis testing, probability, and data analysis.

The paramount importance of the *Gaokao* in the Chinese education system cannot be overstated: unlike the holistic admissions systems common among US universities, the *Gaokao* represents the single criterion for admission for Chinese students. Almost twelve million students took the 2022 *Gaokao*; fewer than 7,000 enrolled in China's top two universities, and fewer than 60% of Chinese students enrolled in tertiary education in 2023.² Undergraduate data science programs are the bridge between the skills taught

in secondary school and postgraduate study or employment in data science fields. A central feature of the Ministry's strategy has been the remarkably rapid expansion of university-level courses of study in data science topics.

In 2016, only three higher education institutions in China offered the Ministry-approved undergraduate major "Data Science and Big Data Technology"; by 2018, that number rose to 250.3 In 2019, the Ministry licensed 35 universities to offer Al as a newly approved undergraduate major; by 2023, 150 colleges and universities offered Al-related programs.4 China's national policies emphasize multi-stream investment in Al research and development, including funding for university research centers through the "Bases and Talents" programs and public-private partnerships such as regional "quidance funds."5



¹ Feng, April, "Memo: Data Science in Chinese Schools, Google Docs, acc High Schools.

² CGTN, "Explainer: Why the Gaokao is China's most important exam," acc China's most important exam.

Jilong Zhang, Anna Fu, Hao Wang, and Shengin Yin - The Development

spending over 15 years.¹ The Deal includes £25 million for the development of career pathways in key sectors and up to £661 million for a Data-Driven Innovation program to "establish the region as the Data Capital of Europe."² The program is hosted primarily by the University of Edinburgh and intends to assist 100,000 people in obtaining a data-science certification or qualification by 2033.³

The program's Data Skills Gateway includes discrete initiatives for data science education and upskilling in schools, colleges, universities, and the workplace. Data Education in Schools, the Gateway's K-12 initiative, provides materials for the study of the National Progression Award in Data Science, a national course by the Scottish Qualifications Authority.⁴ The course first became available in 2019 and is available for both schools and colleges.⁵ The Award requires competencies in fundamental data science concepts and "data citizenship," including data literacy and social responsibility, with the option to study statistics, computer programming and machine learning in more depth.⁶ Data Education in Schools also provides professional development workshops and classroom and lesson plan resources for data science teachers.⁷

"Data literacy shouldn't be an Excel training course — it should be creative and engaging, showing learners how they can use data for social good to make a real difference. The problems learners solve don't need to be dry or dull — instead they can pretend to be secret agents finding the evil villain's secret lair using datasets to narrow down the possibilities!"

Kate Farrell

Director of Curriculum and Professional Learning
Data Education in Schools

US Economy Landscape

Growth and Proliferation of Selected Skills

	% Occupations Featuring	Actual Skill Growth (2019-	Wage
Skill	Skill	2022)	Premium
Algorithms	8.9%	-6.3%	12.3%
Analytics	11.5%	4.6%	10.9%
Artificial Intelligence	14.2%	62.2%	16.9%
Big Data	5.5%	-29.7%	15%
Business Intelligence	9.1%	-2.1%	14.8%
Business Metrics	12.1%	11.6%	11.8%
Data Acquisition	6.6%	-0.5%	1.9%
Data Analysis	59.9%	17.7%	6.1%
Data Collection	55.4%	18.9%	N/A
Data Governance	1.9%	30.8%	14.1%
Data Integrity	9.6%	-0.1%	2.3%
Data Quality	6.0%	4.3%	5.4%
Data Recording	20.8%	31%	N/A
Data Science	10.2%	34%	11.4%
Data Structures	2.8%	-2.5%	7.8%
Data Visualization	9.3%	33.5%	9%
Data Warehousing	4.0%	-17%	8.9%
Machine Learning	13.0%	31.7%	16.9%
Statistical Analysis	12.5%	2.6%	N/A

© 2023 Burning Glass Institute

Skill Analysis: Refined Search Terms

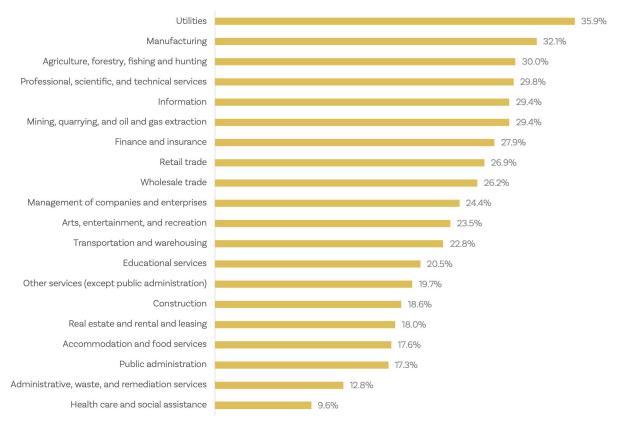
FIGURE 1 - Data science skill analysis framework. Source: Burning Glass Institute

FIGURE 1 - Data science ski	ii alialysis I alliewolk. 30a/ce. Da	Tilling Glass Histitate	
Getting the Data			Communicating Results
 Data Collection Data Quality Data Ethics Data Recording Data Acquisition Data Collection 	Data integration + Data validation + Data structures + Data processing + Data architecture + Data cleaning + Data manipulation	Data management + Data privacy + Data security + Data governance + Data migration + Data integrity + Data warehousing	 Data presenting Data writing Interpersonal communication
Exploring and Analyzing	g the Data		
Business data strategy + Business intelligence	Statistics and mathematics + Mathematics	Analyzing trends and prediction	Data software + Programming language

- Business metrics
- Data strategy
- + Data literacy

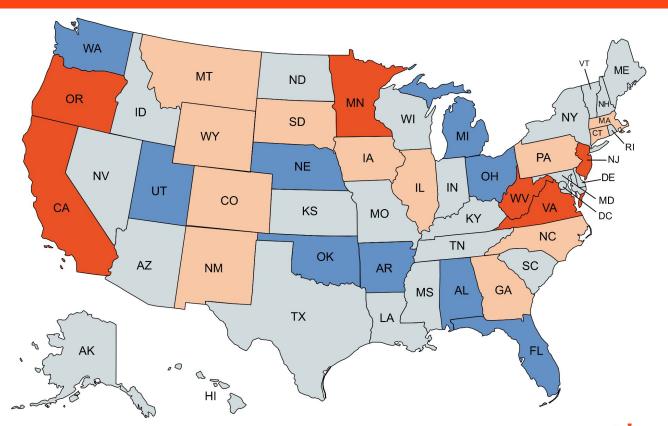
- + Statistical analysis
- + Statistical modeling
- + Statistical reporting
- + Statistical methods

- + Analytics
- + Data science
- + Data analysis
- + Ouantitative research
- + Forecasting
- + Big data
- + Artificial intelligence
- + Algorithms
- + Machine learning
- + Data visualization

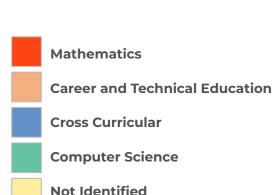

- Statistical software
- Business intelligence tools

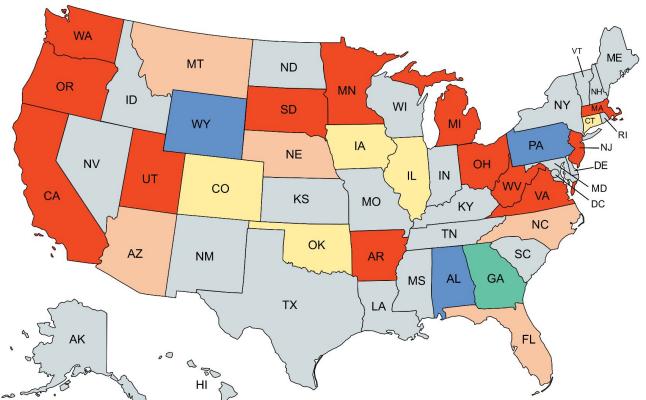
Skill Analysis: Refined Search Terms, by Sector

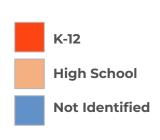
FIGURE 5 - Share of job postings listing at least one data science skill as a share of all job ads in the industry, 2023
Source: Burning Glass Institute analysis of Lightcast posting data

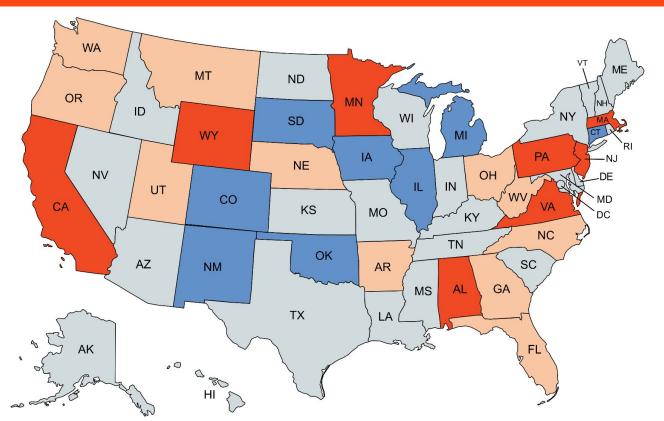


US Policy Landscape


Data Science State Implementation Tiers


- Tier 3 Standards or Framework Adoption
- Tier 2 Course Pilot, Course Sequence or Teacher PD
- Tier 1 Added to State Course Catalog


Content Area Implementation



Grade Band Implementation

Implementation Data

Course Catalogs and Enrollment

Forum Guide to
Understanding the School Courses
for the Exchange of Data (SCED)
Classification System

School Courses for the Exchange of Data (SCED) is a voluntary, common classification system for prior-to-secondary and secondary school courses. It can be used to compare course information, maintain longitudinal data about student coursework, and efficiently exchange course-taking records. SCED is based on a five-digit Course Code that provides a basic structure for classifying course content. Additional SCED elements and attributes provide descriptive information about each course.

SCED 10.0 - 11.0 22 Miscellaneous

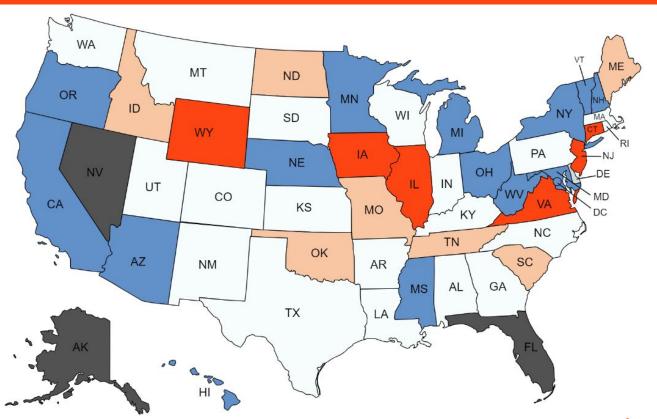
SCED 12.0

25 Integrative Learning

25 051 Data Literacy 25 052 Data Science

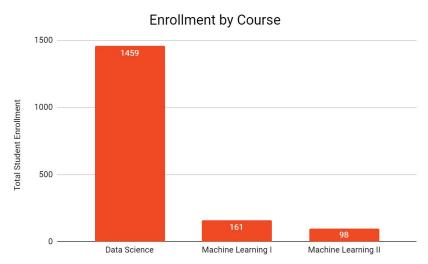
25 053 Data Science Applications

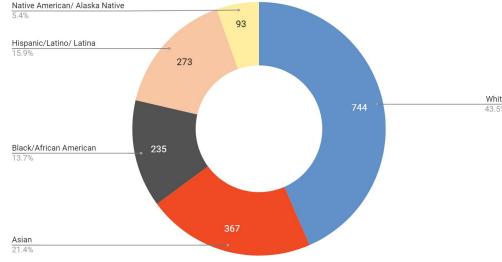
Course Catalogs by State



DS Courses in <u>Catalog Only</u> (No Enrollment)

No DS Courses in Catalog


Pending State Reply


SY 22-23 Data Not Available

SY 22-23 Virginia Course Demography

Total Enrollment by Race/Ethnicity

Total Enrollment by Gender

State Exemplars

Oregon

2 + 1 Mathematics Model

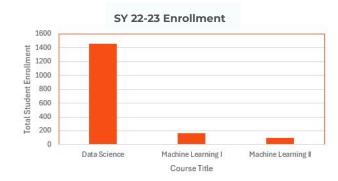
2022

The Oregon Math Project 2+1 Model was released as an official update to state standards and learning guidelines for districts statewide.

The model specifies that all students learn a full year of Algebra, a semester of Geometry, and a semester of Data Analysis before 10th grade. In the 12th grade, students are able to select from multiple mathematics course sequences, which includes a two-course pathway for data science and statistics and/or AP statistics.

Virginia

Data Science Standards, Math



2022

Virginia became the first state in the country to develop dedicated standards for a data science high school course. The standards were created through a multi-year effort through collaboration from the Virginia Department of Education, local school districts, state industry partners, higher education partners, and other stakeholders. These standard have been formally added to the mathematics standards.

SY 22-23

Virginia Department of Education approved and began implementing a full year course pilot for a high school data science course.

West Virginia

Data Science Standards, Math + CS

2023

West Virginia Department of Education developed standards for a standalone data science course.

These were created in collaboration between mathematics and computer science educators. The course is an exemplar example of fusion of mathematics and computer science content.

Arkansas

Career and Technical Education + Math

2019

Arkansas Department of Education developed a new three-course high school program for Data Science that can fulfill both CTE and mathematics credits.

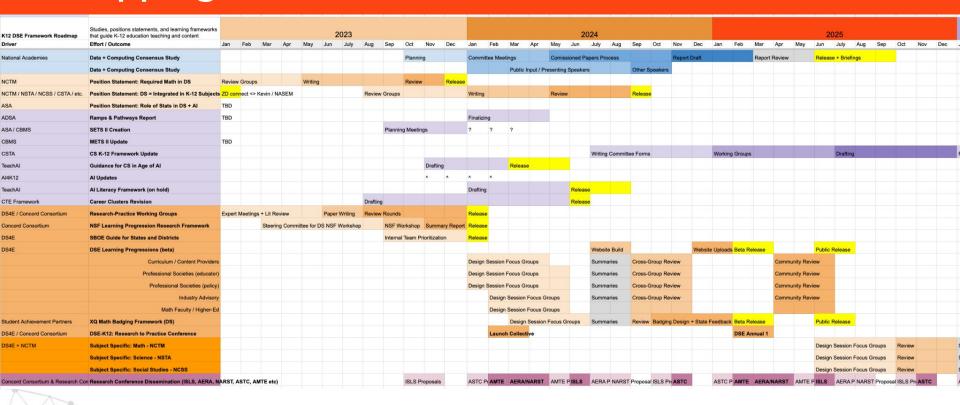
These were created in collaboration with the University of Arkansas and local industry to meet the needs of the workforce and employers who are seeking stronger technical skills from high school graduates.

Washington

Modernized Algebra II

2022

Washington Office of Superintendent of Public Instruction began work to design a modernized Algebra II course that would integrate data science, mathematical modeling, and financial literacy into the standards content for all students.


The course design was in collaboration between OSPI, state higher education partners, and local industry.

DS4E 2024 Roadmap

Mapping Efforts on Data Science & Al Education

Data Science Learning Progression - Draft Plan

	2024		2025			2026			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Core DS Framework	Focus Groups		Writing Public RI	Build -I Period	Beta Release				
Subject-by Subject					Subject Articulation ((Math, Science, Soc	Groups ial Studies)	Writing	Build	Release

Focus Groups Phase I:

- Curriculum providers (CP Network)
- Industry
- Higher-Ed (Mathematicians et al.)
- Higher-Ed Data Science (ADSA)
- Students (college / undergraduate)
- Policy State Subject Leads

- Teacher-Educators Math, Science, Social Studies (AMTE)
- Teachers Math (NCTM)
- Teachers Science (NSTA)
- Teachers Social Studies (NCSS)
- Teachers Computer Science (CSTA)
- Teachers English (NCTE)

Data Science Learning Progression - Draft Plan

Three goals:

- Identify <u>Priority Learning Outcomes</u> (+ measure differences)
- 2. **Identify Design Recommendations** for the format & aligned resources to the progressions
- 3. **Socialize that this work** is happening broadly, and identify volunteers / leaders for future work across sectors

Prompt

A single question:

"If a hypothetical high school exit exam about data was given in 2030, what should be covered?"

Focus Group Results

Focus Group Results: Ranked Outcomes

"If there were a hypothetical high school exit exam about data in 2030, what should be covered?"	Out of 10
Content Outcomes	Total
Be able to conduct an Exploratory Data Analysis including identify, collect, organize, interpret, vizualize and predict with data and be able to exploratory data analysis, and basics of data process design or building comfort with a dataset	8.1
Being Data Literate and having the ability to interpret and analyze various presentationss of data from others across subjects / disciplines in daily life or media, including textual, numerical, and visual data, and be critical, cautious, curious.	7.1
Understand data visualization methods and their importance, including to recognize appropriate ways to visualize data according to their types and interpret them to identify trends, patterns, etc	6.1
Understand statistics through simulations and intuition for re-sampling methods, (beyond the "famous formulas") including the effects of outliers or other features	5.4
Algorithmic Thinking Skills: Be able to recognize patterns, decompose problems, algorithmically think and abstract from computation or technology	5.1
Carry out basic probabilistic calculations/interpretations and apply them to actual situations (in games of chance, medical judgements, etc.)	4.0
Understand biases in data-based conclusions and the ethical issues surrounding those	3.9
Demonstrate responsible data collection approaches data sheets for data sets, other ethical considerations	3.7
Know various ways to story tell with data including the visualization of data, including intentional design for an audience and using clear models for story telling	3.6
Understand that domain knowledge should guide data analysis for most real world problems, and build comfort interfacing with disciplines where data comes from: how can you find that info? what do you need to know quickly? What do you need to ask an expert about?	3.6

Higher Education:

10 faculty
4.5 mathematics
2.5 computer science
1 bio-engineering
1 bio-informatics
1 political science

Focus Group Results: Ranked Outcomes

"If there were a hypothetical high school exit exam about data in 2030, what should be covered?"	Out of 10
Content Outcomes	Total
General Data Literacy: Understanding types, sources, ethics, and the importance of data in various contexts	19
Communicate results / effective storytelling from data analysis for decision-making.	10.5
How to ask questions about data / identify questions for data analysis	7.5
Ethical use of data - analyzing and interpreting data, using a responsible approach, and being able to articulate possible implications of the use of data	6.25
Be able to critically consider data presented in the media and other life contexts - such as the doctor's office.	6.25
Demonstrate competency in working with numerical information by critically analyzing quantitative information, generating ideas that are supported by quantitative evidence	6
Drawing conclusions from data (confounding and causal inference)	4.75
Identify and characterize relationships between things and trends	4.5
Data Visualization : Principles of visual data representation, using tools like Tableau or Power BI., storytelling	3.5
Programming for Data Analysis : Basics of Python or R for data manipulation, analysis, and visualization.	5.5

Data Science Specialization

12 program directors from around the country, representing community college and 4-year undergraduate programs in data science, with a focus on incoming students

Focus Group Results: Ranked Outcomes

"If there were a hypothetical high school exit exam about data in 2030, what should be covered?"	Out of 10
Content Outcomes	Total
Tool selection: Effectively and efficiently use appropriate tools to collect, store, visualize, and analyze data (tool selection) (no willy-nilly tech use)	12
Use and intrepret appropriate data to inform decisions, support and evaluate claims, and create solutions to local and/or global problems (i.e. to current events, community challenges, social justice, race / culture, or other advocacy).	11.5
Telling a story with data : Students are able to visualize and analyze, and then effectively communicate results to a selected audience based on the data	11
Determine the validity of data source AND the data analysis, including the collection methods, intent of data collection, and identifying possible sources of bias (validity = "unbiased") in analysis	11
Ask good questions and gather / collect data to answer them	10
Students can create multiple types of data representations, and how to create those different visuals (spreadsheets, graphing software, etc.) (transition from spreadsheets to other tools), and be able to explain which is the most useful / problem / use-case at hand	9
Students will know how to implement modeling techniques and know the limitations of the chosen modeling techniques (linear regression vs. other types, descriptive vs. predictive)	8
Develop and design an analysis plan (up-front) to approach the problem-solving process	7.5
Apply sound, ethical, legal, professional, and security measures while conducting statistical investigations	5

Math Educators

12 math educators from around the country, representing different states, schools, and districts

One more thing...

Practitioner Literature Reviews: Forthcoming

Topics:

- Learning Progression Design
- Assessment Design
- Educator Professional Learning
- Technology Access & Transfer
- Informal & Out-of-School

