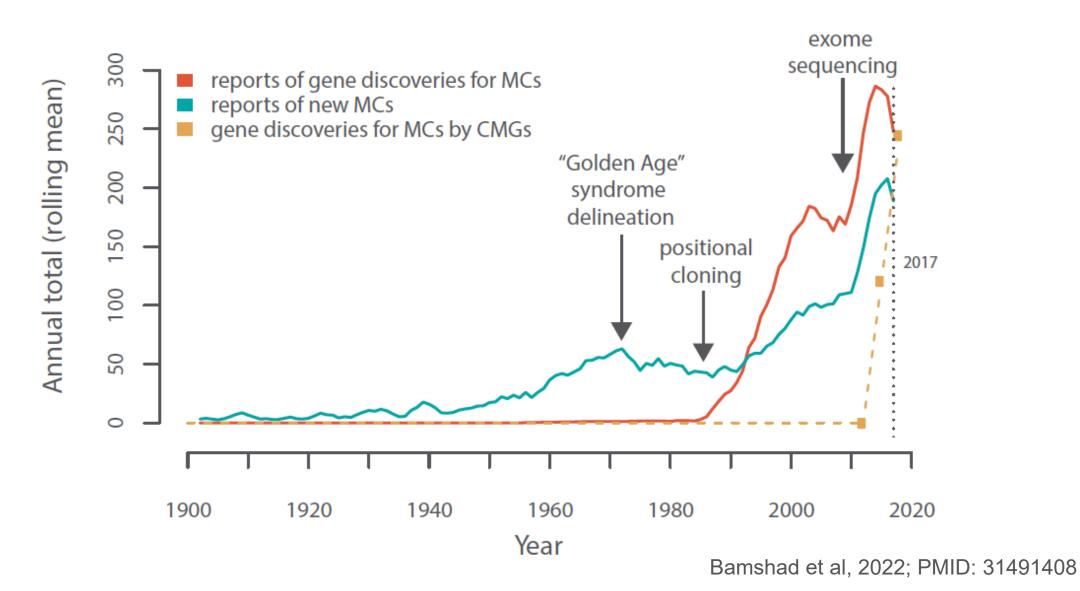
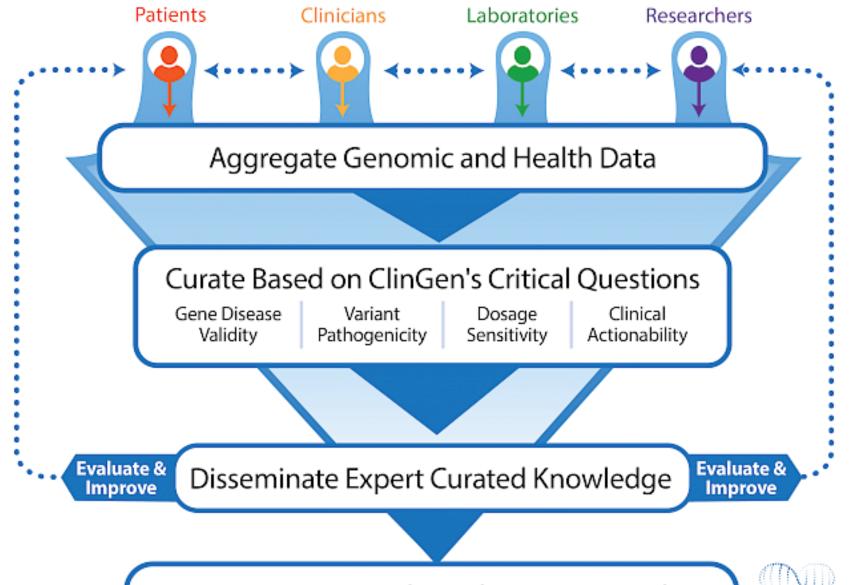
Issues regarding data reanalysis for actionable variants

Geisinger

Natasha Strande, PhD, DABMGG, FACMG

Assistant Professor


Dept. Genomic Health and Autism & Developmental Medicine Institute


Clinical Laboratory Director, MyCode

Outline

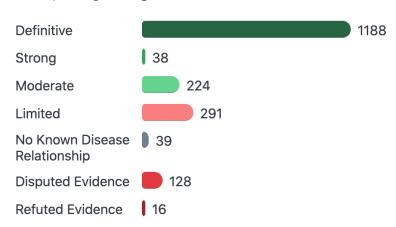
- Review variant and gene classification schemes and evolution
- Rate of variant re-classification over time
- MyCode reanalysis experience with updating gene lists
- Policies regarding reanalysis

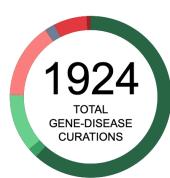
Continued Gene Discovery

Improve Patient Care Through Genomic Medicine

Gene Disease Validity

GENE/DISEASE PAIR:					
Assertion criteria	Genetic Evidence (0-12 points)	Experimental Evidence (0-6 points)	Total Points (0-18)	Replication Over Time (Y/N)	
Description	Case-level, family segregation, or case- control data that support the gene-disease association	Gene-level experimental evidence that support the gene-disease association	Sum of Genetic & Experimental Evidence	> 2 pubs w/ convincing evidence over time (>3 yrs.)	
Assigned Points	А	В	В С		
		LIMITED	0.1-6		
		MODERATE	7-11		
	CALCULATED ASSIFICATION	STRONG	12-18		
	DEFINITIVE		12-18 & Replicated Over Time		
Valid contradictory evidence (Y/N)*	adictory dence E				
	CURATOR CLASSIFICATION		F		
	FINAL CLASSIFICATION		G		

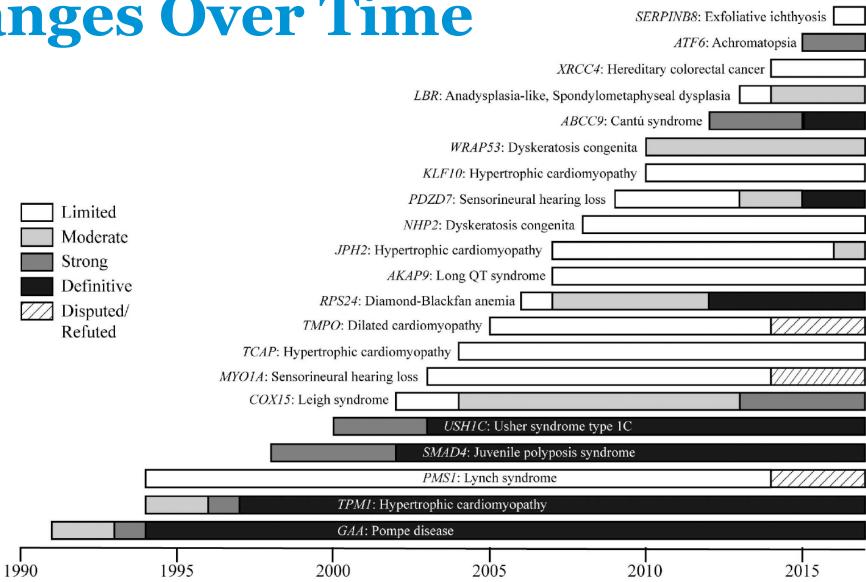



G Gene-Disease Clinical Validity Statistics

The ClinGen Gene-Disease Clinical Validity curation process involves evaluating the strength of evidence supporting or refuting a claim that variation in a particular gene causes a particular disease.

Classification Statistics

Gene-Disease Clinical Validity has 1924 curations encompassing 1586 genes.



Strande & Riggs et al., 2017; PMID: 28552198

KLHL24: Epidermal bullosa simplex

Changes Over Time

Variant Classification Guidelines

ACMG recommendations

September/October 2000 · Vol. 2 · No. 5

ACMG recommendations for standards for interpretation of sequence variations

ACMG Labo

pretation and

course of pro

(1) to provid ing of such to

may inform

ACMG Standards and Guidelines

April 2008 · Vol. 10 · No. 4

ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007

B LB VUS LP P
<1% <10% >90% >99%

"Probability of pathogenicity"

C. Sue Richards, PhD Madhuri R. Hegde, P Laboratory Quality A

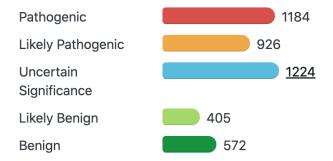
Key Words:

Disclaimer: These T geneticists to help the and does not necessa ACMG STANDARDS AND GUIDELINES

Genetics inMedicine

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵;


Classification Criteria

		BENIGN (CRITERIA	PATHOGENIC CRITERIA					
Strength of evidence		Strong	Supporting	Supporting	Moderate	Strong	Very Strong		
Odds of Pathogenicity*		-18.7	-2.08	2.08	4.33	18.7	350.0		
se	Population Data	<i>BA1</i> ⁺ BS1 BS2			PM2	PS4			
မှု Allelic Evidence &			BP2 PP1						
	Cosegregation BS4 Data	BS4	BS4	n BS4	BP5		PM3 PM6	PS2	
Evidence Cate Corresponding ACM	Computation & Predictive Data		BP1 BP3 BP4 BP7	PP2 PP3	PM1 PM4 PM5	PS1	PVS1		
l	Functional Data	BS3				PS3			
	Other		BP6	PP4 PP5					

Evolving Classification Guidelines

Classification Statistics

Variant Pathogenicity has 4311 curations.

21 Approved ClinGen Variant Curation Expert Panels

Expert Panel Name	♦ Type ♦	CDWG \$	Statu
ACADVL Variant Curation Expert Panel	VCEP	Inborn Errors of Metabolism CDWG	
Brain Malformations Variant Curation Expert Panel	VCEP	Neurodevelopmental Disorders CDWG	
Cardiomyopathy Variant Curation Expert Panel	VCEP	Cardiovascular CDWG	
DH1 Variant Curation Expert Panel	VCEP	Hereditary Cancer CDWG	
Cerebral Creatine Deficiency Syndromes Variant Curation Expert Panel	VCEP	Inborn Errors of Metabolism CDWG	
DICER1 and miRNA-Processing Gene Variant Curation Expert Panel	VCEP	Hereditary Cancer CDWG	
amilial Hypercholesterolemia Variant Curation Expert Panel	VCEP	Cardiovascular CDWG	
BN1 Variant Curation Expert Panel	VCEP	Cardiovascular CDWG	
Glaucoma Variant Curation Expert Panel	VCEP	Ocular CDWG	
Hearing Loss Variant Curation Expert Panel	VCEP	Hearing Loss CDWG	
Hereditary Breast, Ovarian and Pancreatic Cancer Variant Curation Expert Panel	VCEP	Hereditary Cancer CDWG	
ysosomal Storage Disorders Variant Curation Expert Panel	VCEP	Inborn Errors of Metabolism CDWG	
Malignant Hyperthermia Susceptibility Variant Curation Expert Panel	VCEP	Other	
Mitochondrial Disease Nuclear and Mitochondrial Variant Curation Expert Panel	VCEP	Inborn Errors of Metabolism CDWG	
Monogenic Diabetes Variant Curation Expert Panel	VCEP	Inborn Errors of Metabolism CDWG	
Myeloid Malignancy Variant Curation Expert Panel	VCEP	Hereditary Cancer CDWG	
Phenylketonuria Variant Curation Expert Panel	VCEP	Inborn Errors of Metabolism CDWG	
Platelet Disorders Variant Curation Expert Panel	VCEP	Hemostasis/Thrombosis CDWG	
PTEN Variant Curation Expert Panel	VCEP	Hereditary Cancer CDWG	
RASopathy Variant Curation Expert Panel	VCEP	RASopathy CDWG	
Rett and Angelman-like Disorders Variant Curation Expert Panel	VCEP	Neurodevelopmental Disorders CDWG	
P53 Variant Curation Expert Panel	VCEP	Hereditary Cancer CDWG	

Rates of Variant Reclassification

Variable Rates

Volume 21 | Number 10 | October 2019 | GENETICS in MEDICINE

Variant classification changes over time in BRCA1 and BRCA2

Chloe Mighton, BSc^{1,2}, George S. Charames, PhD FACMG^{3,4,5}, Marina Wang, MD⁴, Kathleen-Rose Zakoor, MBinf^{4,5}, Andrew Wong, MSc⁴, Salma Shickh, MS CGC^{1,2}, Nicholas Watkins, MSc CGC/CCGC⁴, Matthew S. Lebo, PhD FACMG^{6,7}, Yvonne Bombard, PhD^{1,2} and Jordan Lerner-Ellis, PhD FACMG^{3,4,5}

Analyzing and Reanalyzing the Genome: Findings from the MedSeq Project

22% participants

Kalotina Machini,^{1,2,3} Ozge Ceyhan-Birsoy,^{1,7} Danielle R. Azzariti,^{1,4} Himanshu Sharma,¹ Peter Rossetti,¹ Lisa Mahanta,¹ Laura Hutchinson,¹ Heather McLaughlin,^{1,8} The MedSeq Project, Robert C. Green,^{3,4,5} Matthew Lebo,^{1,2,3,4,9} and Heidi L. Rehm^{1,2,3,4,6,9,*}

The American Journal of Human Genetics 105, 177–188, July 3, 2019 177

Highly dependent on the type and date of initial classification type

JAMA | Original Investigation

6.4% variants

Prevalence of Variant Reclassification Following Hereditary Cancer Genetic Testing

Jacqueline Mersch, MS, CGC; Nichole Brown, MS, CGC; Sara Pirzadeh-Miller, MS, CGC; Erin Mundt, MS, CGC; Hannah C. Cox, PhD; Krystal Brown, PhD; Melissa Aston, BS; Lisa Esterling, PhD; Susan Manley, MS, CGC, MBA; Theodora Ross, MD, PhD

Analysis of hereditary cancer gene variant classifications from ClinVar indicates a need for regular reassessment of clinical assertions 0.6 - 6.4% variants

Directionality of Changes

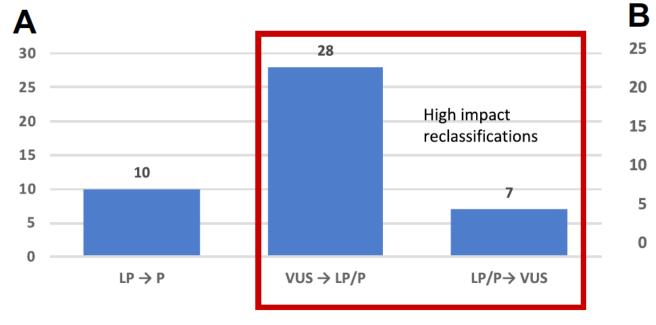
Table 1 Summary of classification and reclassification from ClinVar (Jan 2016–July 2019)

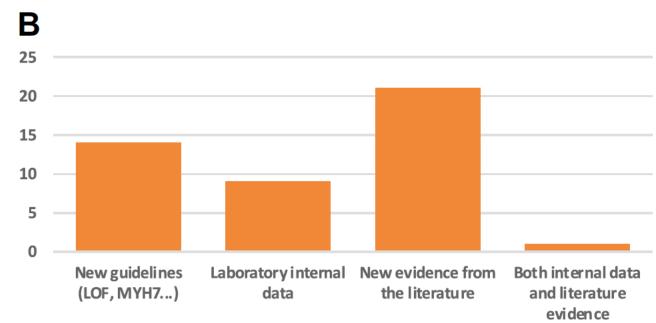
Starting classification (n)	Percentage reclassified (n)	Reclassification type (n)	Percentage of initial classification group	Percentage of all reclassifications
Pathogenic (63,658)	0.17% (110)	P → LP (64)	58.2%	1.4%
		$P \rightarrow VUS (41)$	37.3%	0.91%
		$P \rightarrow LB (1)$	0.91%	0.02%
		$P \rightarrow B (4)$ 3.69	3.6%	0.09%
Likely pathogenic (36,808)	2.16% (796)	$LP \rightarrow P (625)$	78.5%	13.9%
		LP → VUS (165)	20.7%	3.7%
		$LP \rightarrow LB (4)$	0.50%	0.09%
		$LP \rightarrow B$ (2)	0.25%	0.04%
Uncertain significance (272,581)	0.95% (2584)	$VUS \rightarrow P (171)$	6.6%	3.8%
		VUS → LP (486)	18.8%	10.8%
		VUS → LB (1586)	61.4%	35.2%
		$VUS \rightarrow B (341)$	13.2%	7.6%
Likely benign	0.71% (996)	$LB \rightarrow P$ (2)	0.20%	0.04%
(140,779)		$LB \rightarrow LP$ (2)	0.20%	0.04%
		LB → VUS (66)	6.6%	1.5%
		LB → B (926)	93.0%	20.6%
Benign (58,024)	0.03%	$B \rightarrow P (1)$	6.7%	0.02%
	(15)	$B \rightarrow LP (3)$	20.0%	0.07%
		$B \rightarrow VUS (1)$	6.7%	0.02%
		$B \rightarrow LB (10)$	66.7%	0.22%

Abbreviations: B Benign, LB Likely benign, LP Likely pathogenic, P Pathogenic, VUS Variant of uncertain significance

Harrison and Rehm, 2019; PMID: 31752965

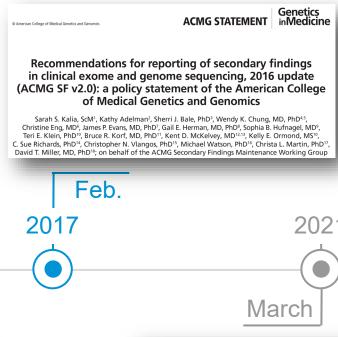
Table 1 Number of *BRCA1/2* variants that AMDL had submitted to ClinVar for which there were discordant submissions

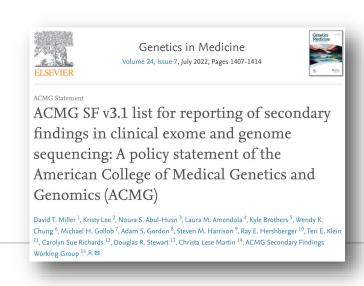

Number of variants with discordant ClinVar submissions (total n = 488)

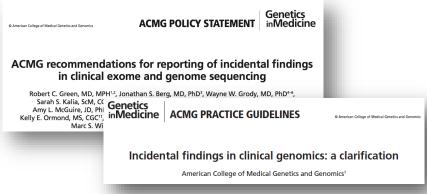

Discrepancy across two	ACMG/AMP levels			
Likely Benign/Benign	14.8% (72/488)			
Likely Pathogenic/	9.2% (45/488)			
Pathogenic				
Discrepancy across thr	ee ACMG/AMP levels			
Benign/Likely Benign/	68.6%% (335/488)			
VUS				
Pathogenic/Likely	6.1%% (30/488)			
Pathogenic/VUS				
Discrepancy across five ACMG/AMP levels				
Pathogenic/VUS/Likely	0.6% (3/488)			
Benign/Benign				
Different classification system				
Pathogenic/Risk Factor	0.6% (3/488)			

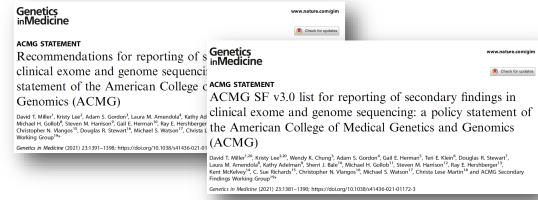
ACMG/AMP American College of Medical Genetics and Genomics/Association for Molecular Pathology, ADML Advanced Molecular Diagnostics Laboratory, VUS variant of uncertain significance.

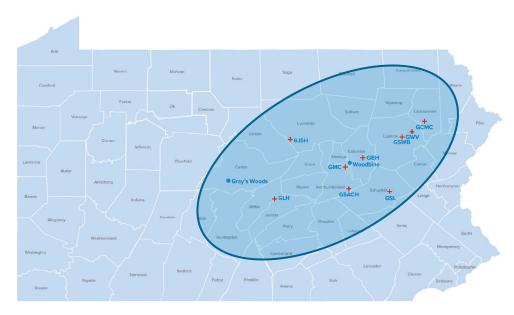
Mighton et al, 2019; PMID: 31043710


Reanalysis of eMERGE data



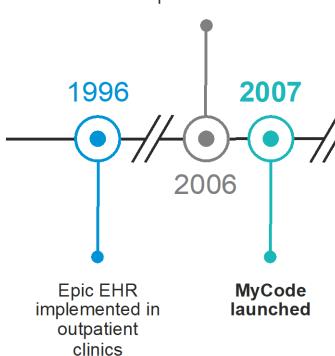



Evolving ACMG SF Recommendations



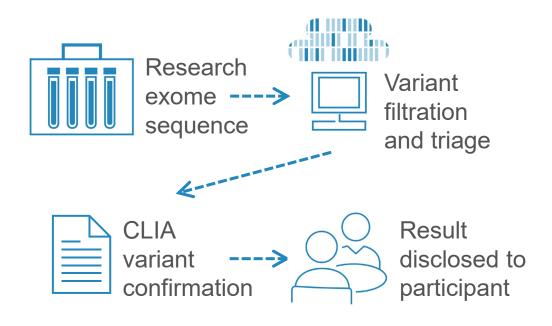
Experiences from Geisinger's MyCode Biobank

Geisinger


- Integrated healthcare system in Central and Northeast Pennsylvania
- Large, stable population of >3M patients, including many multi-generation families
- Longstanding EHR with comprehensive clinical data
- Strong, trusting relationship between patients and Geisinger

PENNSYLVANIA

MyCode Timeline


Epic EHR implemented in inpatient clinics

- MyCode Community Health Initiative is a precision medicine research project at Geisinger
- Includes a system-wide biobank designed to store blood and other samples for research use by Geisinger and Geisinger collaborators

Genomic Screening via MyCode

Opportunistic Screening

Access to Care

Is care available locally?

Clinical Expertise

Are there local clinical experts?

Gene Validity

Is gene associated with disease?

Final Gene List

Utility Is this information actionable?

Clinical

Secondary Findings

Are there SF recommendations?

Newly Added SF v3.0 Genes

Cancer

Hereditary breast and ovarian cancer:

BRCA1/2, PALB2

Lynch syndrome:

MLH1, MSH2, MSH6, PMS2

Familial Adenomatous Polyposis: APC

Endocrine tumor syndromes:

6 genes + **MAX** & **TMEM127** for pheochromocytoma & paragangliomas

+ 10 other cancer conditions

Cardiovascular

Vasculopathies: 7 genes

Cardiomyopathies

(HCM, DCM, ARVC):

16 genes + FLNC, TTN for DCM

Inherited arrhythmias:

4 genes + CASQ2 & TRDN (AR) for CPVT

Familial hypercholesterolemia: APOB,

LDLR, & PCSK9

Miscellaneous

Malignant hyperthermia: RYR1 & CACNA1S

Wilson disease (AR): ATP7B

Hemochromatosis: *HFE* C282Y homozygotes

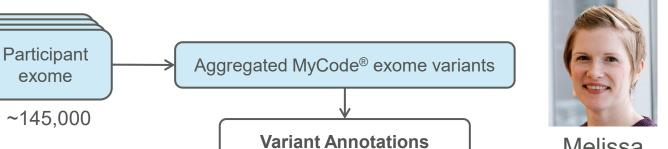
Hereditary Hemorrhagic telangiectasia:

SMAD4, ACVRL1 & ENG

MODY: HNF1A

Retinopathy (AR): RPE65

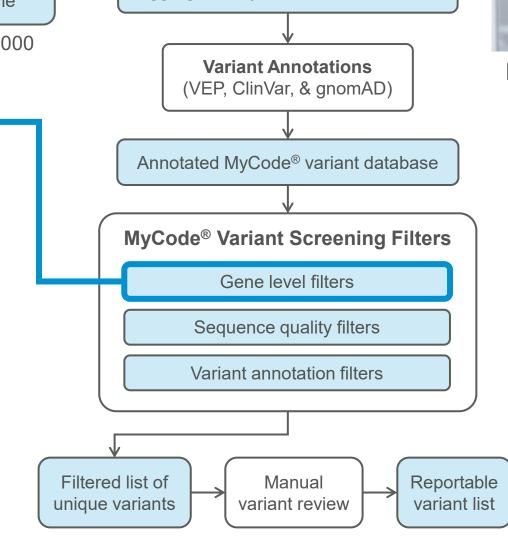
Metabolic

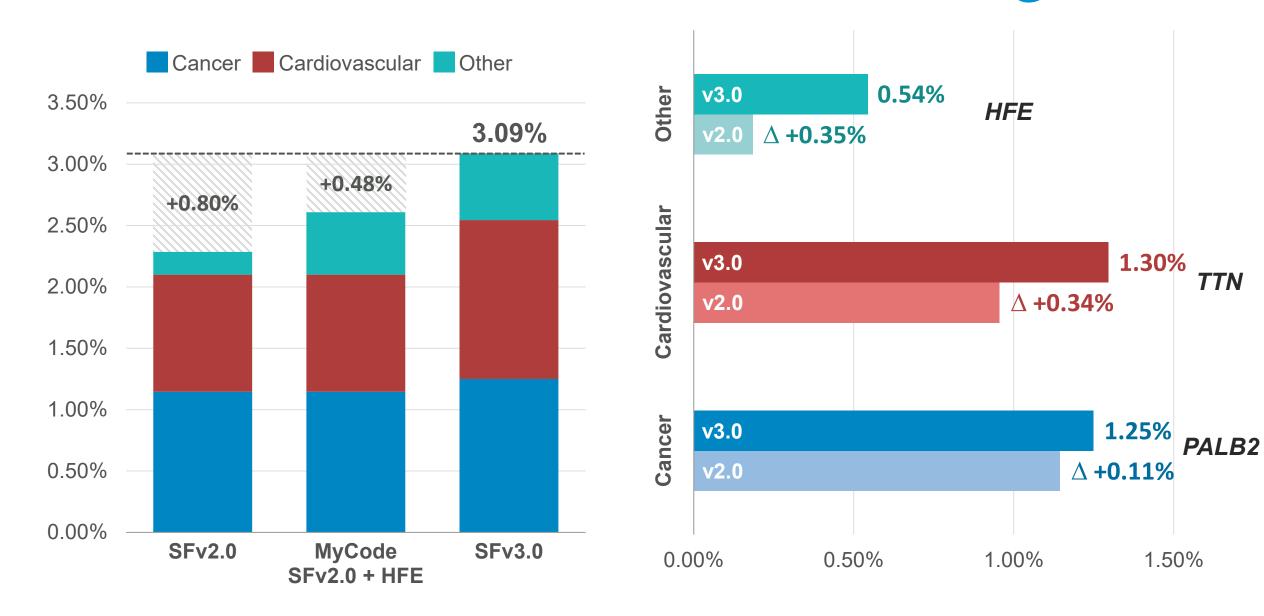

Ornithine transcarbamylase deficiency: *OTC*

Fabry Disease (XL): GLA

Biotinidase deficiency (AR): BTD

Pompe Disease (AR): GAA


Screening Approach


Melissa Kelly

Clinical Domain	v2.0 Genes	v3.0 New Genes	Total Genes
Cancer:	25	+3	28
Cardio:	29	+4	33
Metabolic:	2	+2	4
Misc:	3	+5	8
Total:	59	+14	73

*** Disclaimer: ACMG SF recommendations were not intended for population screening ***

Increase in detection rate with v3.0

ACMG SF v3.1 Genes

Cancer

Hereditary breast and ovarian cancer:

BRCA1/2, PALB2

Lynch syndrome:

MLH1, MSH2, MSH6, PMS2

Familial Adenomatous Polyposis: APC

Endocrine tumor syndromes:

6 genes + **MAX** & **TMEM127** for pheochromocytoma & paragangliomas

+ 10 other cancer conditions

Cardiovascular

Vasculopathies: 7 genes

Cardiomyopathies

(HCM, DCM, ARVC):

16 genes + FLNC, TTN, BAG3, DES,

RBM20, & TNNC1 for DCM

Inherited arrhythmias:

4 genes + CASQ2 & TRDN (AR) for CPVT

Familial hypercholesterolemia: APOB,

LDLR, & PCSK9

Miscellaneous

Malignant hyperthermia: RYR1 & CACNA1S

Wilson disease (AR): ATP7B

Hemochromatosis: *HFE* C282Y homozygotes

Hereditary Hemorrhagic telangiectasia:

SMAD4, ACVRL1 & ENG

MODY: HNF1A

Retinopathy (AR): RPE65

Hereditary transthyretin amyloidosis: TTR

Metabolic

Ornithine transcarbamylase deficiency: *OTC*

Fabry Disease (XL): GLA

Biotinidase deficiency (AR): BTD

Pompe Disease (AR): GAA

Policies Regarding Reanalysis

© American College of Medical Genetics and Genomics

ACMG STATEMENT

Genetics in Medicine

Points to consider in the reevaluation and reanalysis of genomic test results: a statement of the American College of Medical Genetics and Genomics (ACMG)

Joshua L. Deignan, PhD ¹, Wendy K. Chung, MD, PhD², Hutton M. Kearney, PhD³, Kristin G. Monaghan, PhD⁴, Catherine W. Rehder, PhD⁵ and Elizabeth C. Chao, MD⁶; on behalf of the ACMG Laboratory Quality Assurance Committee

Molecular Diagnosis & Therapy (2021) 25:529–536 https://doi.org/10.1007/s40291-021-00541-7

CURRENT OPINION

Clinical Exome Reanalysis: Current Practice and Beyond

Jianling Ji^{1,2} · Marco L. Leung^{3,4} · Samuel Baker⁵ · Joshua L. Deignan⁶ · Avni Santani^{7,8}

Reclassification of clinically-detected sequence variants: Framework for genetic clinicians and clinical scientists by CanVIG-UK (Cancer Variant Interpretation Group UK)

ACMG Points to Consider

- Policies needed to address how reanalysis will be handled
 - Variant-level reevaluation -interrogation and potential reclassification of previously reported variants.
 - Case-level reanalysis involves the review of all variants in an exome or genome, both reported and unreported.
- Respond to external requests for reanalysis
- Reports should clearly state the possibility of variant classification changes over time

Summary

- Evolving list of actionable genes/conditions (v2 to v3 = 35% increase)
- Frequency of changes in variant classifications varies (6.4% – 15%)
- Multiple reasons for reclassifications