

Bruce R. Korf, MD, PhD
UAB Heersink School of Medicine

2017-2020 Two Cohorts

Population Cohort (transitioning to clinical enrollment in 2021) Genotyping array
Variant analysis
Return of results of actionable variants
Genetic counseling
Supportive care

2021 - Present

Pharmacogenetic Report
Genotyping array
Variant analysis
Return of results of actionable variants
Genetic counseling
Supportive care

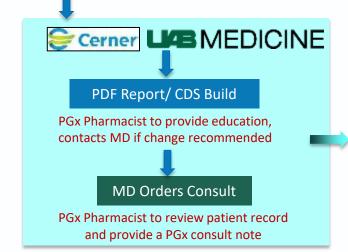
Affected Cohort
Continues

Whole genome sequencing
Variant analysis
Return of results of pathogenic variants
Genetic counseling
Supportive care

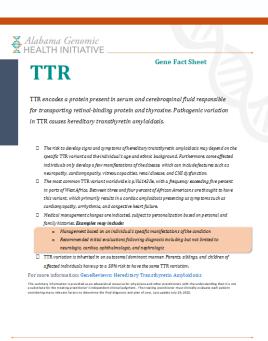
DNA/Tissue Bank

Genomic Database

Medical Records (i2b2)


Protocol: Clinical Cohort

Expected positive ROR return 1.5%


Expected positive PGx return~100 %

Clinician Resource Hub

About the Testing

Genes are made up of DNA, which holds instructions that tell your body how to grow and function. DNA determines physical features, such as eve color and how tall you are.

DNA also affects the makeup of your internal tissues and organs, which can impact how quickly or slowly your body breaks down medications. In short, your genomic makeup can affect how well a medication works for you, your sensitivity to it, what dosage is least likely to cause side effects, and whether you might respond better to an entirely different medication.

That's where pharmacogenomic testing comes in. It can help your health care providers better understand your body before prescribing a drug, thereby increasing the chances that your treatment will be safe and effective.

Testing requires a blood sample, so that your DNA can be examined. Your physician and a pharmacist will review the results of your test before adding them to your electronic health record. Health care providers will be able to use this information to provide better care for you, now and in the future.

PHARMACOGENOMIC TESTING

What You Need to Know

DEPARTMENT OF GENETICS The University of Alabama at Birmingham

Kaul 251 • 720 20th Street South Phone: 205.934-9525 • Email: aghi@uab.edu

Alabama Genomic

HEALTH INITIATIVE

https://www.hudsonalpha.org/clinician-resource-hub/aghi/


Population Cohort Enrollment Demographics

ENROLLMENT BY RACE

- American Indian or Alaskan (0.31%)
- Asian (2.24%)
- Black or African American (20.94%)
- Native Hawaiian or Other Pacific Islander (0.05%)
- Unknown (2.15%)
- White (70.82%)
- More Than One Race (3.49%)

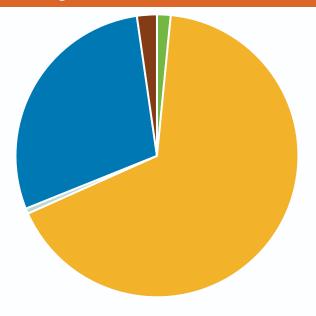
AGHI Community Advisory Board

Opportunity for AGHI leaders to share information about the project's goals, strategies, and findings with the advisory board through quarterly, virtual meetings. During these meetings, members of the board will participate in active discussion about these topics and provide feedback on behalf of the communities they represent.

Dr. Lori Bateman, PhD, RD, Assistant Professor
UAB Division of Preventive Medicine | School of Medicine

Kelly East, MS, CGC, Certified Genetic Counselor Clinical Applications Lead HudsonAlpha Institute for Biotechnology

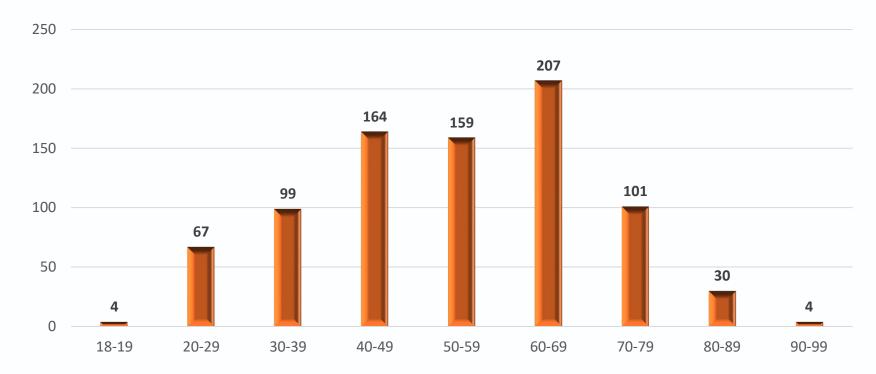
Tiffany Osborne, Program Director II
Minority Health & Health Disparities Research Center
UAB School of Medicine/Division of Preventive
Medicine



Whitley Kelley, MS, CGC, Certified Genetic Counselor HudsonAlpha Institute for Biotechnology

Clinical Cohort Recruitment By the Numbers

- American Indian or Alaskan (0%)
- Asian (1.56%)
- Black or African American (66.75%)
- Native Hawaiian or Other Pacific Islander (0%)
- Unknown (0.6%)
- White (28.81%)
- More Than One Race (2.28%)


0.07% of Participants Are Hispanic/Latinx

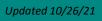
Updated 11/4/22

FY20-22 AGHI Clinical Cohort Participants by Age

Cumulative Population and Clinical Cohort Enrollment

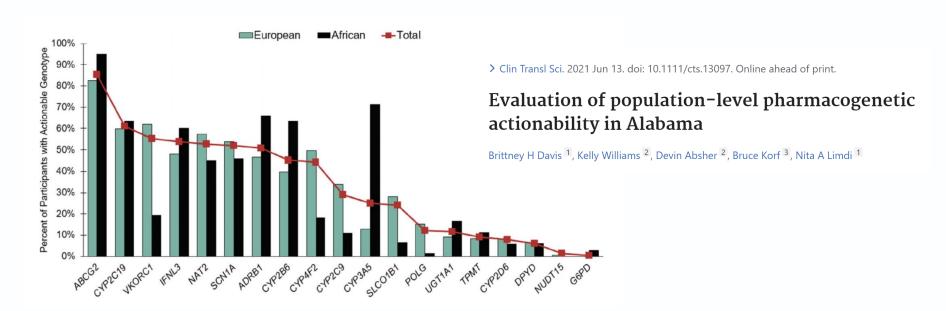
- 7254 participants
- 67 of 67 counties
- 105 actionable results returned to participants
 - = 1% of general population

Actionable Findings in the Clinical and Population Cohort


Туре	Genes		
Tumor Predisposition Breast/ovarian, Li-Fraumeni, Peutz-Jeghers, Lynch, Polyposis, Von Hippel-Lindau, MEN1/2, Medullary thyroid cancer, PTEN hamartoma syndrome, Retinoblastoma, Paraganglioma/pheochromocytoma, Tuberous sclerosis complex, WT1-related Wilms' tumor, NF2	BRCA1/2, TP53, STK11, MLH1, MSH2, MSH6, PMS2, APC, MUTYH, BMPR1A, SMAD4, VHL, MEN1, RET, PTEN, RB1, SDHD, SDHAF2, SDHC, SDHB, TSC1, TSC2, WT1, NF2 New: PALB2, MAX, TMEM127		
Connective Tissue Dysplasia Ehlers-Danlos vascular type, Marfan, Loeys-Dietz, Familial aortic aneurysms and dissections	COL3A1, FBN1, TGFBR1, TGFBR2, SMAD3, ACTA2, MYH11		
Cardiac Hypertrophic cardiomyopathy, dilated cardiomyopathy, Arrhythmia	MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL3, ACTC1, PRKAG2, GLA, MYL2, LMNA, RYR2, PKP2, DSP, DSC2, TMEM43, DSG2, KCNQ1, KCNH2, SCN5A New: CASQ2, TRDN, FLNC, TTN		
Metabolic Hypercholesterolemia, Wilson disease, Ornithine transcarbamylase deficiency	LDLR, APOB, PCSK9, ATP7B, OTC New: BTD, GAA, HFE, TTR		
Pharmacogenetic Malignant Hyperthermia	RYR1, CACNA1S		
Other	New: HFE, ACVRL1, ENG, HNF1A, RPE65		

Population Cohort Actionable Findings (1-2% general population)

BRCA2 (12)	RYR1 (10)	MYH7 (7)	MUTYH (5)		LDLR (5)	
, , ,	Control Control	()				
			5	5		
			PKP2 (4)	MSH6 (3)	MLH1 (3)	
12						
12	10	7				
MYBPC3 (11)	BRCA1 (9)	APOB (6)		3	3	
			4	RET (2)	GLA (2)	
			KCNQ1 (4)	1121 (2)	327 (2)	
				2	2	
				PMS2 (2)	SCN5A (2)	
11	9	6	4	2	2	


Family History Review

- Forms focus on ACMG SFv2.0 conditions
- Reviewed by Genetic Counselors
- Triaged into 3 categories using published testing criteria guidelines

AGHI and Pharmacogenetics

Biobank

- 19685 plasma aliquots
- 6573 DNAS
- 6350 buffy coats
- 5042 whole blood

- 5950 annotated chips from population cohort
- 444 annotations from the WGS cohort
- 92% consent to biobank and share data in population cohort
- 82% consent to biobank and share data in the clinical cohort

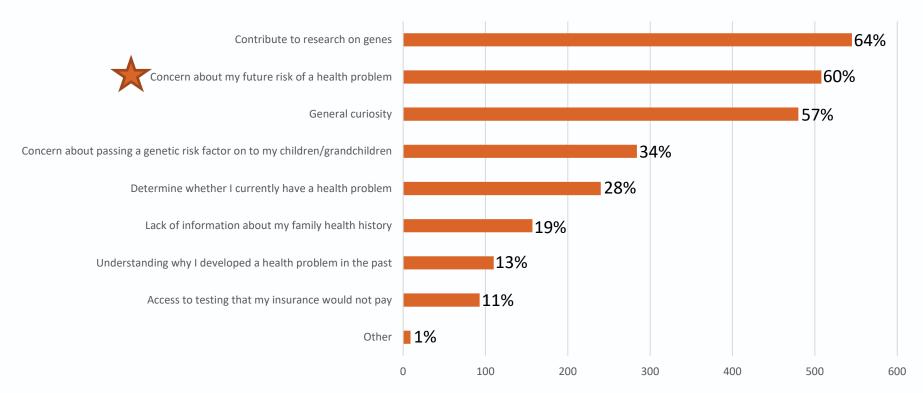
AGHI Participant Experience and Outcomes Ashley Cannon, PhD, MS, CGC

Purpose

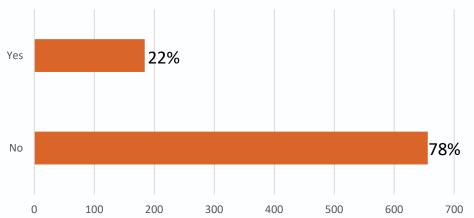
To assess motivation for participation, satisfaction, and actions taken based on AGHI results from the first 2 years of the population study

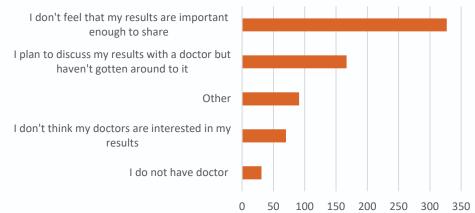
Methods

- An online survey was developed
- A unique survey link was sent via email and postcard to 3874 AGHI participants that received a result and agreed to be re-contacted
- 59 participants that received a medically-actionable result were also contacted by phone call and given the option to complete the survey during the call

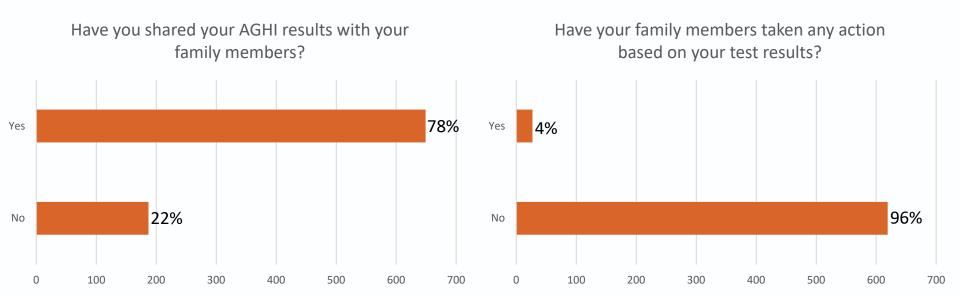

Methods

- An online survey was developed
- A unique survey link was sent via email and postcard to 3874 AGHI participants that received a result and agreed to be recontacted
- 59 participants that received a medically-actionable result were also contacted by phone call and given the option to complete the survey during the call

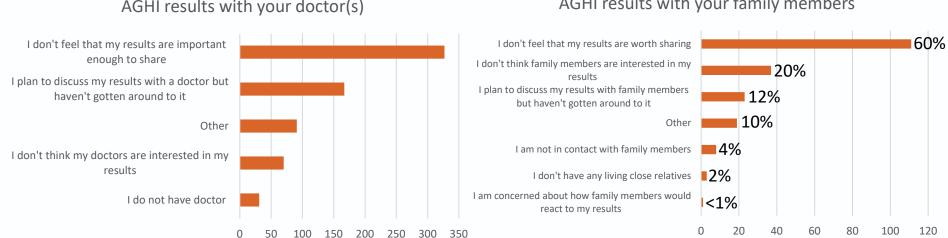

Motivations for Participating in AGHI

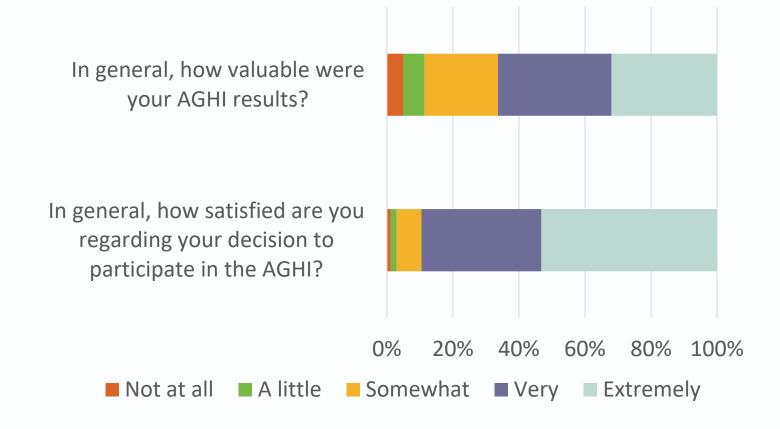


Have you discussed your AGHI results with your physician or another healthcare provider?

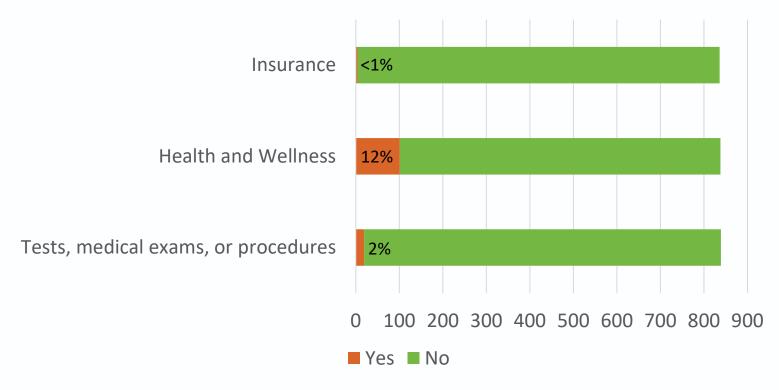


Please share the reason(s) for not discussing your AGHI results with your doctor(s)




Please share the reason(s) for not discussing your AGHI results with your doctor(s)

Please share the reason(s) for not discussing your AGHI results with your family members



Changes made following AGHI results:

Conclusions

- There is strong community interest in population genomic screening
- ▶ The rate of returnable results is 1-3% based on ACMG SF list
- Need to avoid false reassurance
- Non-penetrance is common at time of testing

AGHI Team

Mitchell B. Cohen, MD Chair of UAB Department of Pediatrics and AGHI Oversight Committee Chair

for Biotechnology

President and Science Director at HudsonAlpha Institute

Senior Vine Deen

at UAB

Etty Benveniste, PhD Robert Kimberly, MD Senior Associate Dean for Basic Sciences for Clinical and Translational Research at UAB

Toni Leeth, MPH Associate Dean for Strategic Planning and Administration at UAB

Oversight Committee

Bruce R. Korf, MD, PhD Chief Genomics Officer of UAB Medicine

Greg Barsh, MD, PhD Faculty Investigator and Faculty Chair at HudsonAlpha Institute for Biotechnology

Matthew Might, PhD Director of UAB Hugh Kaul Precision Medicine Institute

Nita Limdi, PharmD, PhD, MSPH Director, Program for Translational

Mariko Nakano, PhD Assistant Professor

Co-PIs

Stephen Sodeke, PhD Bioethicist & Professor of Allied Health Sciences, National Center for Bioethics in Research & Healthcare, Tuskegee University

Jim Cimino, MD Director of UAB Informatics Institute

Jeff Edberg, PhD Professor in UAB Division of Clinical Immunology and Rheumatology

Biobank

Ashley Cannon, Phd Assistant Professor & Certified Genetic Counselor

Engagement

at HudsonAlpha Institute for Biotechnology

Bioethics

Renie Moss Program Director rpmoss@uab.edu (205) 934-9525

Informatics

Mona Fouad, MD UAB Senior Associate

William Curry, MD UAB Associate Dean for Rural Health &

Outreach and Enrollment

Kelly East, CGC Certified Genetic Counselor at HudsonAlpha Institute for Biotechnology

Whitley Kelley, CGC Certified Genetic Counselor at HudsonAlpha Institute for Biotechnology

Greg Cooper, PhD Faculty Investigator at HudsonAlpha Institute for Biotechnology

Anna Hurst, MD Assistant Professor in UAB Department of Genetics

Education

Genomics

