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Motivating Example




Motivating example: smoking and cancer

Let's start with a motivating example: the debate on cigarette smoking
and lung cancer (50's/60’s).

Strong association: smokers had 9 times the risk of nonsmokers to
develop lung cancer (eg. Dorn, 1959).

Causal?

. &— >®
Cigarette Smoking Lung Cancer

Not everyone agreed with this claim. ‘ .
"For my part, | think it is more

-7 TS likely that a common cause
o RN supplies the explanation... The
.’/ \\*. obvious common cause to think
| | of is the genotype’
Cigarette Smoking Lung Cancer - Ronald Fisher (1958)

Observational data alone cannot distinguish both models.

No matter how big the data. No matter how deep your NN.



Motivating example: smoking and cancer

Let's suppose for a moment that Fisher’'s hypothesis were true.

Lung Cancer

How strong would unobserved confounding need to be to

explain all the observed association? "...It cigarette smokers have 9

L times the risk of nonsmokers for

-7 NN developing lung cancer, and this

el AN Is not because cigarette smoke

.}/ é. is a causal agent, ..., then the

Cigarette Smoking Lung Cancer proportion of horm_one-X-

producers among cigarette

smokers must be at least 9

Sensitivity analysis + plausibility judgments = there must be a times greater than that of
causal path between cigarette smoking and lung cancer. nonsmokers’

- Cornfield et al (1959)



Why do we need sensitivity analyis (and automation)?

Most of traditional causal inference still relies on strong exact

assumptions such as the absence of unobserved confounders, or the
absence of certain direct effects.

And the truth is that hardly anyone believes that those assumptions hold
exactly.

We need tools that make it easy to routinely discuss the sensitivity of

our estimates when our assumptions are called into question, as In the
smoking and cancer debate.

Moreover, we need "automated Cornfields” — derivations such as those
performed by Cornfield should not have to be done "by hand,” for each
new different question, model or assumption. They should be automatized.
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Sensitivity Analyses




Sensitivity today: it is getting better

Although often praised, sensitivity analysis is still rarely practiced. However, we do see a recent uptake in many
disciplines. What is changing”? Here's a partial list of challenges that are gradually being addressed:

* Challenge: strong parametric and distributional assumptions about the unobserved confounders;
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e Recent methods |mpose no extraneous parametrlo assumptlons on oonfounders

I B _ i —

. Challenge lack of simple, |nterpretable senS|t|V|ty measures users can read|Iy apply and routlnely report

| '

. Recent methods derive S|mple measures to summarize the robustness of an estlmate to systematic
| b|ases suoh as the the E-Value (Vanderweele and Dlng) or the robustness vaIue (Clnelll and HazIett)
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» Challenge: difficulty in connecting formal results to a cogent argument about which confounders are pIausibIe'

~ « Recent methods provide more mterpretable senS|t|V|ty paa e@?axrmum paar wer
| Confounders) and formal benohmarklng exercises, oomparlng observed with unobserved confounders. ‘
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» Challenge: methods restricted to binary treatments, b|nary outcomes, or a specific estlmands

(;w are fully non- parametrlo cover a broad class ofe?dmas and aI eX|b
| estlmatlon wrth maohlne learning.
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Omitted Variable Bias Approach to Sensitivity Analysis

Making Sense of Sensitivity: Extending Omitted Variable Bias

Carlos Cinelli * Chad Hazlett!

An Omitted Variable Bias Framework for Sensitivity
Analysis of Instrumental Variables

Carlos Cinelli* Chad Hazlett!
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- LONG STORY SHORT: |
1 OMITTED VARIABLE BIAS IN CAUSAL MACHINE LEARNING |

| {l
| t

VICTOR CHERNOZHUKOV', CARLOS CINELLI", WHITNEY NEWEY*, AMIT SHARM -
AND VASILIS SYRGKANIS? |
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Long Story Short: Omitted Variable Bias in Causal ML

We provide a general nonparametric theory of omitted
variable bias for a broad class of causal parameters: Mot

Results Under Conditional Ignorability Robustness Values

Short Estimate Std. Error Confidence Bounds ,

RVg_0 4=0.05 }

Partially Linear

- average potential outcomes;

Nonparametric

9,002 1,394 [6,271; 11,733] | 5.4% |
7,949 1,245 [5,509; 10,388] | 4.5% |

- average treatment effects (e.g, ATE/ATT/ATU);

- average causal derivatives (e.g. continous treatments).
- average effects from transporting covariates;

- average effects from distributional changes.

Bounds depend on simple plausibility judgments on the
maximum explanatory power of latent variables (R2's).

We provide robustness statistics for routine reporting.

We derive relative bounds on the strength of confounder if they
were as strong as observed covariates.

Flexible statistical inference using debiased machine learning.
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(A) Lower limit confidence bound (|p| =1).



Open problems

Goal: make sensitivity analyisis routine and standard practice.

e Theory, methods and easy to use software to perform sensitivity analysis for all common
study designs.

e Eqg: 1V, DID, RDD, Synthetic Controls.

e Theory, methods and easy to use software for handling all common types of biases,
simulatenously:

e Selection Bias;
e Missing Data;
e Measurement error;
e Cross-Population Bias;
e Sensitivity to functional constraints (e.g. monotonicity);
e All the above should be acompanied with theory for modern estimation and inference.

While some of these have been solved for specific cases (e.g., specific estimands), we still

lack general, easy to use, broadly applicable results.
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Automation (for sensitivity)




Current sensitivity analysis literature

Limited to specific model structures, solved on a case-by-case basis;
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Sensitivity analyses results for canonical models, as we have seen, are very useful.
But moving forward we need to address the essence of the problem in a more general way.

This calls for a flexible, systematic approach to incorporate credible and realistic
constraints on causal models. Derivations of partial identification results or sensitivity
curves should be performed automatically.
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Algorithmic Tools for Sensitivity Analysis

Efficient Identification in Linear Structural Causal Models
with Auxiliary Cutsets

1

Daniel Kumor! Carlos Cinelli? Elias Bareinboim 3

Exploiting equality constraints in causal inference

Chi Zhang' Carlos Cinelli? Bryant Chen® Judea Pearl’

| Sensitivity Analysis of Linear Structural Causal Models

‘v Carlos Cinelli! Daniel Kumor? Bryant Chen? Judea Pearl! Elias Bareinboim 2




Example: linear structural equation models

Goal: systematic approach to sensitivity analysis for arbitrary linear structural equation models (SEM)

1. Formalize sensitivity analysis as identification with non-zero constraints;

2. Devise a novel graphical procedure (PushForward) to incorporate numerical constraints on

bidirected edges;
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3. Develop an efficient graph-based identification algorithm:
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Example: linear structural equation models

The algorithm captures all canonical cases.
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These are a small subset of all possible models.
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Example: here, you can use bounds on the strength of
confounding between Z and W to bound the causal
effect of X and Y.

An algorithmic approach frees the researcher to model
what they know, and to choose a sensitivity parameter
according to the available expert knowledge.
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Open problems

Goal: solve causal inference problems at scale. Automatize (partial) identification.

e \We still do not have general algorithms for partial identification and bounds in arbitrary non-
parametric DAGs;

e |n certain cases, we actually do have potentially complete solutions to partial identification
and sensitivity using tools from computer algebra or optimization:

e |inear SEMs, use Groebner Basis; Discrete systems, use polynomial programming.
These algorithms are inneficient. Perhaps, we still should try to scale them up?

e Many constraints not implemented by (partial) identification algorithms:
e |nequality constraints; shape constraints.
o Knowledge Representation and Elicitation:

e |t remains difficult to elicit and represent causal knowledge. Graphical models have
been extremely helpful, but many open problems remain: e.g. variable importance?

o Software for automatic identification and estimation is still a major bottleneck.
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Thank you!

carloscinelli.com


http://carloscinelli.com

