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Motivating Example



Strong association: smokers had 9 times the risk of nonsmokers to 
develop lung cancer (eg. Dorn, 1959).

Causal?  

Observational data alone cannot distinguish both models.

Motivating example: smoking and cancer

“For my part, I think it is more 
likely that a common cause 
supplies the explanation… The 
obvious common cause to think 
of is the genotype”  

- Ronald Fisher (1958)

Let’s start with a motivating example: the debate on cigarette smoking 
and lung cancer (50’s/60’s). 

Not everyone agreed with this claim.

No matter how big the data. No matter how deep your NN.
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“…if cigarette smokers have 9 
times the risk of nonsmokers for 
developing lung cancer, and this 
is not because cigarette smoke 
is a causal agent, …, then the 
proportion of hormone-X-
producers among cigarette 
smokers must be at least 9 
times greater than that of 
nonsmokers“ 

- Cornfield et al (1959) 

How strong would unobserved confounding need to be to 
explain all the observed association?

Let’s suppose for a moment that Fisher’s hypothesis were true.

Implausible

Sensitivity analysis + plausibility judgments = there must be a 
causal path between cigarette smoking and lung cancer.

Motivating example: smoking and cancer
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Most of traditional causal inference still relies on strong exact 
assumptions such as the absence of unobserved confounders, or the 
absence of certain direct effects.

And the truth is that hardly anyone believes that those assumptions hold 
exactly.

We need tools that make it easy to routinely discuss the sensitivity of 
our estimates when our assumptions are called into question, as in the 
smoking and cancer debate.

Why do we need sensitivity analyis (and automation)?

Moreover, we need "automated Cornfields" – derivations such as those 
performed by Cornfield should not have to be done "by hand,"  for each 
new different question, model or assumption. They should be automatized.



Sensitivity Analyses
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Sensitivity today: it is getting better

Although often praised, sensitivity analysis is still rarely practiced. However, we do see a recent uptake in many 
disciplines.  What is changing? Here's a partial list of challenges that are gradually being addressed: 

• Challenge: strong parametric and distributional assumptions about the unobserved confounders;  

• Recent methods impose no extraneous parametric assumptions on confounders. 

• Challenge: lack of simple, interpretable sensitivity measures users can readily apply and routinely report; 

• Recent methods derive simple measures to summarize the robustness of an estimate to systematic 
biases, such as the the E-Value (Vanderweele and Ding) or the robustness value (Cinelli and Hazlett). 

• Challenge: difficulty in connecting formal results to a cogent argument about which confounders are plausible;  

• Recent methods provide more interpretable sensitivity parameters (e.g. maximum explanatory power of 
confounders) and formal benchmarking exercises, comparing observed with unobserved confounders. 

• Challenge: methods restricted to binary treatments, binary outcomes, or a specific estimands.  

• Recent methods are fully non-parametric, cover a broad class of estimands, and allow for flexible 
estimation with machine learning.



Omitted Variable Bias Approach to Sensitivity Analysis
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We provide a general nonparametric theory of omitted 
variable bias for a broad class of causal parameters: 

- average potential outcomes; 

- average treatment effects (e.g, ATE/ATT/ATU); 

- average causal derivatives (e.g. continous treatments). 

- average effects from transporting covariates; 

- average effects from distributional changes. 

Bounds depend on simple plausibility judgments on the 
maximum explanatory power of latent variables (R2's). 

We provide robustness statistics for routine reporting. 

We derive relative bounds on the strength of confounder if they 
were as strong as observed covariates. 

Flexible statistical inference using debiased machine learning. 

Long Story Short: Omitted Variable Bias in Causal ML
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Goal: make sensitivity analyisis routine and standard practice. 

• Theory, methods and easy to use software to perform sensitivity analysis for all common 
study designs. 

• Eg: IV, DID, RDD, Synthetic Controls. 

• Theory, methods and easy to use software for handling all common types of biases, 
simulatenously: 

• Selection Bias; 

• Missing Data; 

• Measurement error; 

• Cross-Population Bias; 

• Sensitivity to functional constraints (e.g. monotonicity); 

• All the above should be acompanied with theory for modern estimation and inference. 
While some of these have been solved for specific cases (e.g., specific estimands), we still 
lack general, easy to use, broadly applicable results.

Open problems



Automation (for sensitivity)



Limited to specific model structures, solved on a case-by-case basis;

Current sensitivity analysis literature 

Sensitivity analyses results for canonical models, as we have seen, are very useful.  

But moving forward we need to address the essence of the problem in a more general way.  

This calls for a flexible, systematic approach to incorporate credible and realistic 
constraints on causal models. Derivations of partial identification results or sensitivity 
curves should be performed automatically.
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Algorithmic Tools for Sensitivity Analysis



1. Formalize sensitivity analysis as identification with non-zero constraints;

2. Devise a novel graphical procedure (PushForward) to incorporate numerical constraints on 
bidirected edges;

3. Develop an efficient graph-based identification algorithm:

Goal: systematic approach to sensitivity analysis for arbitrary linear structural equation models (SEM)
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Example: linear structural equation models



The algorithm captures all canonical cases.

Example: here, you can use bounds on the strength of 
confounding between Z and W to bound the causal 
effect of X and Y. 

These are a small subset of all possible models.

16

An algorithmic approach frees the researcher to model 
what they know, and to choose a sensitivity parameter 
according to the available expert knowledge.

Example: linear structural equation models
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Goal: solve causal inference problems at scale. Automatize (partial) identification. 

• We still do not have general algorithms for partial identification and bounds in arbitrary non-
parametric DAGs; 

• In certain cases, we actually do have potentially complete solutions to partial identification 
and sensitivity using tools from computer algebra or optimization: 

• Linear SEMs, use Groebner Basis; Discrete systems, use polynomial programming. 
These algorithms are inneficient. Perhaps, we still should try to scale them up? 

• Many constraints not implemented by (partial) identification algorithms: 

• Inequality constraints; shape constraints. 

• Knowledge Representation and Elicitation: 

• It remains difficult to elicit and represent causal knowledge. Graphical models have 
been extremely helpful, but many open problems remain: e.g. variable importance? 

• Software for automatic identification and estimation is still a major bottleneck.

Open problems
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Thank you!
carloscinelli.com

http://carloscinelli.com

